Fibronectin Fibrils and Growth Factors Stimulate Anchorage-Independent Growth of a Murine Mammary Carcinoma

Stromal cells are important regulators of mammary carcinoma growth and metastasis. We have previously shown that a 3T3-L1 adipocyte cell line secretes hepatocyte growth factor (HGF), which stimulates proliferation of a murine mammary carcinoma (SP1) in monolayer cultures (DNA Cell Biol.13, 1189–1897...

Full description

Saved in:
Bibliographic Details
Published inExperimental cell research Vol. 222; no. 2; pp. 360 - 369
Main Authors Saulnier, Ron, Bhardwaj, Bhavna, Klassen, Jennifer, Leopold, Doris, Rahimi, Nader, Tremblay, Eric, Mosher, Deane, Elliott, Bruce
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stromal cells are important regulators of mammary carcinoma growth and metastasis. We have previously shown that a 3T3-L1 adipocyte cell line secretes hepatocyte growth factor (HGF), which stimulates proliferation of a murine mammary carcinoma (SP1) in monolayer cultures (DNA Cell Biol.13, 1189–1897, 1994). We now examine the role of growth factors and the extracellular matrix protein fibronectin in stimulation of anchorage-independent growth of SP1 cells. Purified transforming growth factor-β (TGF-β) stimulated significant colony growth in soft agar cultures, whereas HGF had a lesser effect. Analysis by confocal microscopy revealed that carcinoma cell colonies contained extracellular microfibrils composed of fibronectin. Partial depletion of fibronectin from 7% FBS/agar cultures reduced the number of colonies; colony growth could be recovered by adding back exogenous fibronectin. Addition of the 70-kDa N-terminal fragment of fibronectin, which inhibits fibronectin fibril formation, reduced growth of SP1 cell colonies, but an 85-kDa fragment containing the cell binding domain did not inhibit colony growth. These findings indicate that deposition of extracellular fibronectin fibrils is necessary, but not sufficient, for anchorage-independent growth of SP1 mammary carcinoma cells; growth factors are also required. SP1 cells had less fibronectin mRNA and secreted less fibronectin protein under anchorage-independent conditions than under anchorage-dependent conditions, as determined by Northern blotting and immunoprecipitation analysis. Thus, both growth factors (HGF and TGF-β) and fibronectin may be important regulators of paracrine stimulation by stromal cells of anchorage-independent growth of mammary carcinoma cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-4827
1090-2422
DOI:10.1006/excr.1996.0045