Biochemical Characterization of the Interaction of Lipid Phosphoric Acids with Human Platelets: Comparison with Platelet Activating Factor

A series of lipid phosphoric acids, including 1-O-alkyl-2-lyso-glycerophosphoric acid, 1-O-acyl-2-lyso-glycerophosphoric acid, hexadecylpropanediolphosphoric acid, N-acyl-2-aminoethanolphosphoric acid, sphingosine phosphoric acid, and certain homologues and analogues, were synthesized and characteri...

Full description

Saved in:
Bibliographic Details
Published inArchives of biochemistry and biophysics Vol. 311; no. 2; pp. 358 - 368
Main Authors Sugiura, T., Tokumura, A., Gregory, L., Nouchi, T., Weintraub, S.T., Hanahan, D.J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of lipid phosphoric acids, including 1-O-alkyl-2-lyso-glycerophosphoric acid, 1-O-acyl-2-lyso-glycerophosphoric acid, hexadecylpropanediolphosphoric acid, N-acyl-2-aminoethanolphosphoric acid, sphingosine phosphoric acid, and certain homologues and analogues, were synthesized and characterized by thin-layer chromatography, fast-atom bombardment mass spectrometry, and their ability to aggregate human platelets. The presence of a receptor for these lipid phosphoric acids that is distinct from the PAF receptor is strongly suggested from experiments involving a desensitization procedure, platelet-activating factor (PAF) receptor antagonists, and inhibitors of the lipid phosphoric acids. The unique features of the interaction of these lipid phosphoric acids with platelets include: (a) evidence for a separate receptor(s) for this diverse group of synthetic compounds, (b) no requirement for stereospecificity (i.e., no glycerol backbone), and (c) a structural requirement for a long-chain hydrocarbon residue covalently bound to a phosphoric acid residue. In the interaction of these compounds with the platelet, it is mandatory that extracellular Ca2+ and ADP be present for maximum biological activity. The potential involvement of a lipid phosphoric acid receptor, which could form a component of the activation pathway associated with various lysophospholipids and analogues, such as PAF, via a phospholipase D activation, is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-9861
1096-0384
DOI:10.1006/abbi.1994.1249