Huang-Qi San ameliorates hyperlipidemia with obesity rats via activating brown adipocytes and converting white adipocytes into brown-like adipocytes
Brown adipose tissue (BAT) activation is a promising therapeutic target to treat hyperlipidemia with obesity. Huang-Qi San (HQS), an traditional Chinese medicine, can ameliorate hyperlipidemia with obesity, but its mechanism of action (MOA) is not understood. To articulate the MOA for HQS with anima...
Saved in:
Published in | Phytomedicine (Stuttgart) Vol. 78; p. 153292 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier GmbH
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Brown adipose tissue (BAT) activation is a promising therapeutic target to treat hyperlipidemia with obesity. Huang-Qi San (HQS), an traditional Chinese medicine, can ameliorate hyperlipidemia with obesity, but its mechanism of action (MOA) is not understood.
To articulate the MOA for HQS with animal models.
The main chemical constituents of HQS were identified by high-performance liquid chromatography (HPLC) based assay. Hyperlipidemia with obesity rat models induced by high-fat diet were employed in the study. The levels of the fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) were measured to evaluate the ability of HQS to ameliorate hyperlipidemia with obesity. Pathological analyses of organs were conducted with Oil Red O staining, hematoxylin-eosin (H&E) staining and transmission electron microscopy. The expression of mRNAs related to thermogenic genes, fatty acid oxidation-related genes and mitochondria biogenic genes were examined by quantitative real-time PCR. The protein expressions of uncoupling protein 1 (UCP1) were investigated by immunohistochemistry and western blot. Simultaneously, the protein expression of PR domain containing 16 (PRDM16), ATP synthase F1 subunit alpha (ATP5A) was detected by western blot.
HQS ameliorates metabolic disorder, lipid ectopic deposition, obesity and maintained glucose homeostasis in hyperlipidemia with obesity rats. HQS can significantly increase the number of mitochondria and reduced the size of the intracellular lipid droplets in BAT, and increase the expression of BAT activation-related genes (UCP1, PGC1α, PGC1β, Prdm16, CD137, TBX1, CPT1a, PPARα, Tfam, NRF1 and NRF2) in vivo. Furthermore, UCP1, PRDM16 and ATP5A proteins of BAT were increased.
HQS can activate BAT and browning of S-WAT (subcutaneous white adipose tissue) through activating the PRDM16/PGC1α/UCP1 pathway, augmenting mitochondrial biogenesis and fatty acid oxidation to increase thermogenesis and energy expenditure, resulting in a significant amelioration of hyperlipidemia with obesity. Therefore, HQS is an effective therapeutic medicine for the treatment of hyperlipidemia with obesity.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0944-7113 1618-095X |
DOI: | 10.1016/j.phymed.2020.153292 |