Mesoscopic Stoner Instability in Open Quantum Dots: Suppression of Coleman-Weinberg Mechanism by Electron Tunneling
The mesoscopic Stoner instability is an intriguing manifestation of symmetry breaking in isolated metallic quantum dots, underlined by the competition between single-particle energy and Heisenberg exchange interaction. Here we study this phenomenon in the presence of tunnel coupling to a reservoir....
Saved in:
Published in | Physical review letters Vol. 124; no. 19; p. 196801 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.05.2020
|
Online Access | Get more information |
Cover
Loading…
Summary: | The mesoscopic Stoner instability is an intriguing manifestation of symmetry breaking in isolated metallic quantum dots, underlined by the competition between single-particle energy and Heisenberg exchange interaction. Here we study this phenomenon in the presence of tunnel coupling to a reservoir. We analyze the spin susceptibility of electrons on the quantum dot for different values of couplings and temperature. Our results indicate the existence of a "quantum phase transition" at a critical value of the tunneling coupling, which is determined by the Stoner-enhanced exchange interaction. This quantum phase transition is a manifestation of the suppression of the Coleman-Weinberg mechanism of symmetry breaking, induced by coupling to the reservoir. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.196801 |