Event-based distributed filtering against deception attacks for sensor networks with quantization effect
This paper considers a distributed secure filtering problem for a category of time-varying system subject to uncertainty and model-reality mismatch, two-stage deception attacks and bandwidth limitation. Both deception attacks between sensor and corresponding estimator and among estimators appear ran...
Saved in:
Published in | ISA transactions Vol. 126; pp. 338 - 351 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0019-0578 1879-2022 1879-2022 |
DOI | 10.1016/j.isatra.2021.08.009 |
Cover
Loading…
Summary: | This paper considers a distributed secure filtering problem for a category of time-varying system subject to uncertainty and model-reality mismatch, two-stage deception attacks and bandwidth limitation. Both deception attacks between sensor and corresponding estimator and among estimators appear randomly. To alleviate communication burden, a quantization strategy is introduced before transmitting measurement and estimation signals. An event-triggered mechanism is employed for each estimator node thus only necessary data are transmitted to its neighbour sensors when a setting event occurs. The desired target of the problem to be handled is to devise a series of time-varying filters such that the H∞ secure performance is guaranteed against random deception attacks over a finite time horizon. Sufficient conditions ensuring the existence of time-varying filters under effect of complex factors are derived, where filter gains are obtained by finding the solution of a sequence of recursive matrix inequalities online. Simulation results in both numerical example and industrial continuous-stirred tank reactor system are given to show the validity of the presented methodology.
•A novel distributed filtering system in which two-stage deception attacks exist in the communication channels is established.•The quantization strategy and event-triggered protocol are exploited for bandwidth and energy saving filtering system.•For the established secure performance, filter gains are derived by obtaining the solution of matrix inequalities for online application. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0019-0578 1879-2022 1879-2022 |
DOI: | 10.1016/j.isatra.2021.08.009 |