Real-Time Hybrid Locomotion Mode Recognition for Lower Limb Wearable Robots

Real-time recognition of locomotion-related activities is a fundamental skill that a controller of lower limb wearable robots should possess. Subject-specific training and reliance on electromyographic interfaces are the main limitations of existing approaches. This study presents a novel methodolog...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 22; no. 6; pp. 2480 - 2491
Main Authors Parri, Andrea, Yuan, Kebin, Marconi, Dario, Tingfang Yan, Crea, Simona, Munih, Marko, Lova, Raffaele Molino, Vitiello, Nicola, Qining Wang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Real-time recognition of locomotion-related activities is a fundamental skill that a controller of lower limb wearable robots should possess. Subject-specific training and reliance on electromyographic interfaces are the main limitations of existing approaches. This study presents a novel methodology for real-time locomotion mode recognition of locomotion-related activities in lower limb wearable robotics. A hybrid classifier can distinguish among seven locomotion-related activities. First, a time-based approach classifies between static and dynamical states based on gait kinematics data. Second, an event-based fuzzy-logic method triggered by foot pressure sensors operates in a subject-independent fashion on a minimal set of relevant biomechanical features to classify among dynamical modes. The locomotion mode recognition algorithm is implemented on the controller of a portable powered orthosis for hip assistance. An experimental protocol is designed to evaluate the controller performance in an out-of-lab scenario without the need for subject-specific training. Experiments are conducted on six healthy volunteers performing locomotion-related activities at slow, normal, and fast speeds under the zero-torque and assistive mode of the orthosis. The overall accuracy rate of the controller is 99.4% over more than 10 000 steps, including seamless transitions between different modes. The experimental results show a successful subject-independent performance of the controller for wearable robots assisting locomotion-related activities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2017.2755048