Exploring the naturally acquired response to Pvs47 gametocyte antigen
Malaria represents a challenging global public health task, with being the predominant parasite in Brazil and the most widely distributed species throughout the world. Developing a vaccine against malaria demands innovative strategies, and targeting gametocyte antigens shows promise for blocking tra...
Saved in:
Published in | Frontiers in immunology Vol. 15; p. 1455454 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
10.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Malaria represents a challenging global public health task, with
being the predominant parasite in Brazil and the most widely distributed species throughout the world. Developing a vaccine against
malaria demands innovative strategies, and targeting gametocyte antigens shows promise for blocking transmission prevention. Among these antigens, Pvs47, expressed in gametocytes, has shown remarkable efficacy in transmission blocking. However, remains underexplored in vaccine formulations. This study employed
methods to comprehensively characterize the physicochemical properties, structural attributes, epitope presence, and conservation profile of Pvs47. Additionally, we assessed its antigenicity in individuals exposed to malaria in endemic Brazilian regions. Recombinant protein expression occurred in a eukaryotic system, and antigenicity was evaluated using immunoenzymatic assays. The responses of naturally acquired IgM, total IgG, and IgG subclasses were analyzed in three groups of samples from Amazon region. Notably, all samples exhibited anti-Pvs47 IgM and IgG antibodies, with IgG3 predominating. Asymptomatic patients demonstrated stronger IgG responses and more diverse subclass responses. Anti-Pvs47 IgM and IgG responses in symptomatic individuals decrease over time. Furthermore, we observed a negative correlation between anti-Pvs47 IgM response and gametocytemia in samples of symptomatic patients, indicating a gametocyte-specific response. Additionally, negative correlation was observed among anti-Pvs47 antibody response and hematocrit levels. Furthermore, comparative analysis with widely characterized blood antigens, PvAMA1 and PvMSP1
, revealed that Pvs47 was equally or more recognized than both proteins. In addition, there is positive correlation between
blood asexual and sexual stage immune responses. In summary, our study unveils a significant prevalence of anti-Pvs47 antibodies in diverse Amazonian samples and the importance of IgM response for gametocytes depuration. These findings regarding the
characterization and antigenicity of Pvs47 provide crucial insights for potential integration into
vaccine formulations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Bart Faber, Biomedical Primate Research Centre (BPRC), Netherlands Edited by: Romulo Dias Novaes, Federal University of Alfenas, Brazil Kazutoyo Miura, National Institute of Allergy and Infectious Diseases (NIH), United States Michael Waisberg, United States Department of Veterans Affairs, United States Thaiany Souza-Silva, Federal University of Minas Gerais, Brazil |
ISSN: | 1664-3224 1664-3224 |
DOI: | 10.3389/fimmu.2024.1455454 |