Messenger RNA induction in cellular salt tolerance of Alfalfa (Medicago sativa)

A salt tolerant alfalfaMedicago sativa L. cell line (HG2-N1) has been selected for growth in 171 mM NaCl. The salt tolerance characteristic is stable and is retained after growth in absence of salt selection for two months.In vitro translation was used to compare mRNA composition from the salt toler...

Full description

Saved in:
Bibliographic Details
Published inPlant cell reports Vol. 8; no. 1; pp. 6 - 11
Main Authors Winicov, I, Waterborg, J.H, Harrington, R.E, McCoy, T.J
Format Journal Article
LanguageEnglish
Published Germany 01.05.1989
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:A salt tolerant alfalfaMedicago sativa L. cell line (HG2-N1) has been selected for growth in 171 mM NaCl. The salt tolerance characteristic is stable and is retained after growth in absence of salt selection for two months.In vitro translation was used to compare mRNA composition from the salt tolerant HG2-N1 and parent salt sensitive HG2 cell lines grown in the presence and absence of 171 mM NaCl. The results suggest that the mRNA composition differs between HG2-N1 and HG2 in a number of RNA species. The salt tolerant HG2-N1 shows both increases and decreases in specific polypeptides as compared to HG2. Many of the enhanced polypeptide bands from mRNA in the salt tolerant HG2-N1 variant appear to be constitutively expressed, since they can be detected from HG2-N1 cells grown in presence and absence of NaCl, but the expression of a few bands may depend on the presence of added NaCl. Most enhanced polypeptides, which are detected from mRNA in the salt tolerant variant HG2-N1 (grown on NaCl) are different from polypeptide bands enhanced in the salt sensitive HG2 line as a result of 24 hour salt stress. Similar results were obtained from two dimensional analysis ofin vivo labeled polypeptides. At least one isolated cDNA clone shows selective expression of mRNA in salt tolerant cells grown in NaCl. These results indicate that adaptive mechanisms for salt tolerance may differ in some aspects from acute stress mechanisms.
ISSN:0721-7714
1432-203X
DOI:10.1007/BF00735767