MicroRNA 320a Predicts Chronic Axial and Widespread Pain Development Following Motor Vehicle Collision in a Stress-Dependent Manner
Study Design Prospective human cohort study combined with molecular studies. Background A microRNA is a small, noncoding RNA molecule that can play a role in disease onset. Recent studies found that circulating levels of microRNA 320a (miR-320a) are associated with musculoskeletal pain conditions an...
Saved in:
Published in | The journal of orthopaedic and sports physical therapy Vol. 46; no. 10; pp. 911 - 919 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Study Design Prospective human cohort study combined with molecular studies. Background A microRNA is a small, noncoding RNA molecule that can play a role in disease onset. Recent studies found that circulating levels of microRNA 320a (miR-320a) are associated with musculoskeletal pain conditions and that miR-320a is stress responsive. Objectives To investigate whether circulating expression levels of miR-320a in the peritraumatic period predict persistent axial musculoskeletal pain 6 months after motor vehicle collision (MVC). Methods We evaluated whether (1) circulating miR-320a and related members of the miR-320a family predict axial musculoskeletal pain and other musculoskeletal pain outcomes 6 months following MVC, and (2) miR-320a regulates stress system and pain-related transcripts in cell culture. Given the wealth of data suggesting that biological mechanisms influencing pain outcomes are often sex and/or stress dependent, interactions between miR-320a, stress, and sex were evaluated. Results In primary analyses (n = 69), a significant crossover interaction was observed between the influence of circulating miR-320a and peritraumatic distress (β = -0.01, P = .002) on post-MVC axial musculoskeletal pain. Reduced peritraumatic miR-320a expression levels predicted axial musculoskeletal pain in distressed individuals (β = -0.12, P = .006) but not nondistressed individuals. In secondary analyses, miR-320a predicted widespread musculoskeletal pain, and related members of the miR-320a family also predicted axial and widespread musculoskeletal pain. In cell culture, miR-320a bound stress and pain-associated 3'UTR transcripts (FKBP5, ADCYAP1, PER2, and NR3C1). Conclusion These data suggest that miR-320a may help mediate regional and widespread changes in pain sensitivity after MVC. J Orthop Sports Phys Ther 2016;46(10):911-919. doi:10.2519/jospt.2016.6944. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0190-6011 1938-1344 |
DOI: | 10.2519/jospt.2016.6944 |