On the James-Stein estimator for the poisson regression model

The Poisson regression model (PRM) aims to model a counting variable y, which is usually estimated by using maximum likelihood estimation (MLE) method. The performance of MLE is not satisfactory in the presence of multicollinearity. Therefore, we propose a Poisson James-Stein estimator (PJSE) as a s...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 51; no. 10; pp. 5596 - 5608
Main Authors Amin, Muhammad, Akram, Muhammad Nauman, Amanullah, Muhammad
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.10.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Poisson regression model (PRM) aims to model a counting variable y, which is usually estimated by using maximum likelihood estimation (MLE) method. The performance of MLE is not satisfactory in the presence of multicollinearity. Therefore, we propose a Poisson James-Stein estimator (PJSE) as a solution to the problems of inflated variance and standard error of MLE with multicollinear explanatory variables. For assessing the superiority of proposed estimator, we present a theoretical comparison based on the matrix mean squared error (MMSE) and scalar mean squared error (MSE) criterions. A Monte Carlo simulation study is performed under different conditions in order to investigate the performance of the proposed estimator where MSE is considered as an evaluation criterion. In addition, an aircraft damage data is also considered to assess the superiority of proposed estimator. Based on the results of simulation and real data application, it is shown that the PJSE outperforms the classical MLE and other biased estimation methods in a sense of minimum MSE criterion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0918
1532-4141
DOI:10.1080/03610918.2020.1775851