A study on X-ray irradiation of composite polyaniline LB films

Composite Langmuir–Blodgett (LB) films from polyaniline and cadmium stearate have been irradiated with ionizing X-rays for various exposure times. In the initial stages of X-ray irradiation the absorption peak at 580 nm of an as-deposited film was seen to decrease with a concomitant increase in the...

Full description

Saved in:
Bibliographic Details
Published inThin solid films Vol. 327; pp. 808 - 812
Main Authors Dhanabalan, A., Malmonge, J.A., Riul, A., Faria, R.M., Oliveira Jr, O.N.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 31.08.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Composite Langmuir–Blodgett (LB) films from polyaniline and cadmium stearate have been irradiated with ionizing X-rays for various exposure times. In the initial stages of X-ray irradiation the absorption peak at 580 nm of an as-deposited film was seen to decrease with a concomitant increase in the absorption in the long wavelength region (700–1100 nm). Upon prolonging the irradiation, the absorption maximum shifted to 800 nm with the LB film color changing to green, characteristic of acid doped polyaniline. The changes in the Fourier transform infrared (FTIR) spectra upon irradiation are also similar to those observed upon acid doping of polyaniline. When compared with acid doping, two major differences were observed for the LB films exposed to X-rays. First, the packing order of the cadmium stearate domains in the composite LB films – as observed by X-ray diffraction – is not affected by the X-ray irradiation. In addition, no significant increase in the DC conductivity was noted after the X-ray exposure whereas similar LB films have their conductivity increased by an order of magnitude upon acid doping. These differences may be explained by considering that the inter-domain contribution to the conductivity is increased by the acid doping because the insulating cadmium stearate domains are destroyed, which does not occur with the X-ray irradiation.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:0040-6090
1879-2731
DOI:10.1016/S0040-6090(98)00766-4