Flood-promoted vessel formation in Prioria copaifera trees in the Darien Gap, Colombia

Trees growing in floodplains develop mechanisms by which to overcome anoxic conditions. Prioria copaifera Griseb. grows on the floodplains of the Atrato River, Colombia, and monodominant communities of this species remain flooded for at least 6 months a year. The aims of this study were as follows:...

Full description

Saved in:
Bibliographic Details
Published inTree physiology Vol. 34; no. 10; pp. 1079 - 1089
Main Authors López, Janeth, Del Valle, Jorge I, Giraldo, Jorge A
Format Journal Article
LanguageEnglish
Published Canada 01.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Trees growing in floodplains develop mechanisms by which to overcome anoxic conditions. Prioria copaifera Griseb. grows on the floodplains of the Atrato River, Colombia, and monodominant communities of this species remain flooded for at least 6 months a year. The aims of this study were as follows: (i) to compare variations in tree-ring structure with varying river water levels; and (ii) to reconstruct variations in water levels from the chronology of variations in the porosity of the tree rings. Discs were taken from 12 trees, and the number of vessels along 3-mm-wide radial transects was counted. Standard dendrochronological techniques were used to determine the mean number of vessels over 130 years, between 1877 and 2006; the signal-to-noise ratio was 13.3 and the expressed population signal 0.93. Furthermore, this series of vessel numbers was calibrated against variations in the water levels between 1977 and 2000; positive correlations were found with the mean for both the annual river water level and the level from June to August. The transfer function between the principal components of the mean annual water level and those of chronology allowed us to reconstruct the river levels over 130 years. Our conclusions are as follows: (i) the number of vessels per ring is an appropriate proxy for determining variations in water levels; and (ii) P. copaifera grows thicker and produces more vessels when water levels rise. The probable ecophysiological causes of this interesting behaviour are discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0829-318X
1758-4469
DOI:10.1093/treephys/tpu077