Effects of strontium on the physicochemical characteristics of hydroxyapatite

In a previous experimental study using a chronic renal failure rat model, a dose-related multiphasic effect of strontium (Sr) on bone formation was found that could be reproduced in an in vitro set-up using primary rat osteoblasts. The results from the latter study allowed us to distinguish between...

Full description

Saved in:
Bibliographic Details
Published inCalcified tissue international Vol. 75; no. 5; pp. 405 - 415
Main Authors Verberckmoes, S C, Behets, G J, Oste, L, Bervoets, A R, Lamberts, L V, Drakopoulos, M, Somogyi, A, Cool, P, Dorriné, W, De Broe, M E, D'Haese, P C
Format Journal Article
LanguageEnglish
Published United States Springer Nature B.V 01.11.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a previous experimental study using a chronic renal failure rat model, a dose-related multiphasic effect of strontium (Sr) on bone formation was found that could be reproduced in an in vitro set-up using primary rat osteoblasts. The results from the latter study allowed us to distinguish between a reduced nodule formation in the presence of an intact mineralization at low Sr-doses (1 microg/ml) and an interference of the element with the hydroxyapatite (HA) formation at high doses (20-100 microg/ml). To further investigate the latter effect of Sr on physicochemical bone mineral properties, an in vitro study was set up in which the UMR-106 rat osteosarcoma cell line was exposed to Sr, added to the cell culture medium in a concentration range varying between 0-100 microg/ml. Temporal growth and functionality of the culture was investigated by measurement of the alkaline phosphatase activity and calcium (Ca) concentration in the culture medium (used as an index of Ca-incorporation, i.e., HA formation) at various time points. At the end of the culture period (14 days post-confluence), samples of the mineralized cultures were taken for further analysis using X-ray diffraction (XRD) and Fourier Transform Infra-Red Spectroscopy (FTIR). Synthetic HA doped with various Sr concentrations (based on the cell culture and previous experimental studies and yielding Sr/(Sr + Ca) ratios ranging from 0-60%), was prepared and examined for crystal growth and solubility. Crystal size was assessed using scanning electron microscopy (SEM). Ca incorporation indicated a reduced mineralization in the 20 and 100 microg/ml Sr groups vs. controls. Sr-doped synthetic HA showed a significant dose-dependent reduction in crystal growth, as assessed by SEM, and an increase in solubility, apparent from 12.7% Sr/(Sr + Ca) on. Moreover, in both mineralized cultures and synthetic HA, XRD and FTIR analysis showed a reduced crystallinity and altered crystal lattice at similar concentrations. These new data support our previous in vivo and in vitro findings and point to a potential physicochemical interference of Sr with HA formation and crystal properties in vivo.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-004-0260-4