Multi-objective optimization in the vibration characteristics of a hydraulic steering system using a conservative and feasible response surface method

This article addresses the approximate multi-objective optimum design of an automotive hydraulic steering system based on a multi-body dynamics analysis. The design problem of a hydraulic steering system was formulated to determine the design dimensions of a steering mechanism that is able to estima...

Full description

Saved in:
Bibliographic Details
Published inEngineering optimization Vol. 52; no. 3; pp. 465 - 483
Main Authors Song, Chang Yong, Lee, Jongsoo, Choi, Ha Young
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.03.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article addresses the approximate multi-objective optimum design of an automotive hydraulic steering system based on a multi-body dynamics analysis. The design problem of a hydraulic steering system was formulated to determine the design dimensions of a steering mechanism that is able to estimate the multi-objective Pareto-optimal solutions of weight and vibration frequencies that are subject to the dynamic response constraints of the main steering components. The multi-objective Pareto-optimal solutions were calculated using the non-dominated sorting genetic algorithm-II (NSGA-II) based on various approximate models, and reviewed in terms of exploration performance and constraint feasibility. The multi-objective Pareto-optimal solution characteristics according to the approximate model were reviewed to identify a proper approximate model for the engineering design of a hydraulic steering system. The results of the Pareto solution from the proposed optimization methods could improve the vibration performance as well as the weight reduction of hydraulic steering systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-215X
1029-0273
DOI:10.1080/0305215X.2019.1593401