Hybrid Energy Storage Sizing and Power Splitting Optimization for Plug-In Electric Vehicles

In this paper, we develop formulation of a multi-objective optimization problem (MOOP) to optimally size a battery unit (BU) ultracapacitor (UC) hybrid energy storage system (HESS) for plug-in electric vehicle (EV). In this application, the objectives were to minimize cost, weight, volume of the HES...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industry applications Vol. 55; no. 3; pp. 2252 - 2262
Main Authors Eldeeb, Hassan H., Elsayed, Ahmed T., Lashway, Christopher R., Mohammed, Osama
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we develop formulation of a multi-objective optimization problem (MOOP) to optimally size a battery unit (BU) ultracapacitor (UC) hybrid energy storage system (HESS) for plug-in electric vehicle (EV). In this application, the objectives were to minimize cost, weight, volume of the HESS simultaneously maximizing the remaining cycle life of the BU at the end of the driving cycle. The MOOP is solved by the non-dominated sorting genetic algorithm type 2 algorithm. Detailed mathematical models for the BU and UC are given. The thermal effect on performance and sizing are also included in the formulation. The power demand by the EV powertrain is shared amongst the BU and HESS by two methods: First is by using wavelet transformation, while the second is by using power split ratio. The ratio of the power (i.e., power split) handled by each storage unit was determined by the optimizer. A sensitivity analysis was conducted for the power splitting ratio verification. The problem was solved for using the urban dynamometer driving schedule and the highway fuel economy test driving profiles. This has resulted in sizing of an HESS with lower cost, volume, and weight than those existing in literature. Finally, the effect of changing the motor type on the MOOP result was investigated.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2019.2898839