Distributionally robust optimization for sequential decision-making

The distributionally robust Markov Decision Process (MDP) approach asks for a distributionally robust strategy that achieves the maximal expected total reward under the most adversarial distribution of uncertain parameters. In this paper, we study distributionally robust MDPs where ambiguity sets fo...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 68; no. 12; pp. 2397 - 2426
Main Authors Chen, Zhi, Yu, Pengqian, Haskell, William B.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.12.2019
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The distributionally robust Markov Decision Process (MDP) approach asks for a distributionally robust strategy that achieves the maximal expected total reward under the most adversarial distribution of uncertain parameters. In this paper, we study distributionally robust MDPs where ambiguity sets for the uncertain parameters are of a format that can easily incorporate in its description the generalized moment as well as statistical distance information of the uncertainty. In this way, we generalize existing works on distributionally robust MDPs with generalized-moment-based and statistical-distance-based ambiguity sets to incorporate information from the former class such as moments and dispersions to the latter class that critically depends on empirical observations of the uncertain parameters. We show that under this format of ambiguity sets, the resulting distributionally robust MDP remains tractable under mild technical conditions and a distributionally robust strategy can be constructed by solving a sequence of one-stage convex optimization subproblems through a Bellman type backward induction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2019.1655738