Robust nonlinear model predictive control for ship dynamic positioning using Laguerre function

This paper is devoted to the issue of computationally efficient and robust nonlinear model predictive control (NMPC) for ship dynamic positioning (DP) systems subjected to input constraints and unknown environmental disturbances. The Laguerre functions, typically applied to the linear systems, are i...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Hou, Xiuhui, Deng, Fang, Yang, Hualin, Yu, Dunjing, Zhang, Hanlin, Li, Boyang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper is devoted to the issue of computationally efficient and robust nonlinear model predictive control (NMPC) for ship dynamic positioning (DP) systems subjected to input constraints and unknown environmental disturbances. The Laguerre functions, typically applied to the linear systems, are introduced to the constrained NMPC design of the nonlinear DP system to reduce the computational burden. The unscented Kalman filter is adopted to estimate the unknown disturbances and states; thus, the disturbance estimates are utilized as the cancellation signal to achieve robust offset-free control. Simulations of the proposed Laguerre function-based NMPC scheme are implemented and compared with the performance of typical Laguerre function-based linear model predictive control (LMPC) for the DP system. Simulation results well demonstrate the effectiveness, robustness and superiority of the proposed controller.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3222762