A fractional Hopf Lemma for sign-changing solutions
In this paper we prove some results on the boundary behavior of solutions to fractional elliptic problems. Firstly, we establish a Hopf Lemma for solutions to some integro-differential equations. The main novelty of our result is that we do not assume any global condition on the sign of the solution...
Saved in:
Published in | Communications in partial differential equations Vol. 49; no. 3; pp. 217 - 241 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.03.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5302 1532-4133 |
DOI | 10.1080/03605302.2024.2337637 |
Cover
Loading…
Summary: | In this paper we prove some results on the boundary behavior of solutions to fractional elliptic problems. Firstly, we establish a Hopf Lemma for solutions to some integro-differential equations. The main novelty of our result is that we do not assume any global condition on the sign of the solutions. Secondly, we show that non-trivial radial solutions cannot have infinitely many zeros accumulating at the boundary. We provide concrete examples to show that the results obtained are sharp. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1080/03605302.2024.2337637 |