Measurements of Superoxide Anion Radical and Superoxide Anion Scavenging Activity by Electron Spin Resonance Spectroscopy Coupled with DMPO Spin Trapping

A quantitative analysis of superoxide anion radical (·O2−) and hydroperoxyl radical (·OOH) generated in the hypoxanthine–xanthine oxidase (HPX–XOD) reaction system in the presence of dimethyl sulfoxide (DMSO) was explored by a spin-trapping method using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) combin...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 67; no. 4; pp. 1085 - 1090
Main Authors Kohno, Masahiro, Mizuta, Yukio, Kusai, Masako, Masumizu, Toshiki, Makino, Keisuke
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 01.04.1994
Chemical Society of Japan
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A quantitative analysis of superoxide anion radical (·O2−) and hydroperoxyl radical (·OOH) generated in the hypoxanthine–xanthine oxidase (HPX–XOD) reaction system in the presence of dimethyl sulfoxide (DMSO) was explored by a spin-trapping method using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) combined with electron spin resonance spectroscopy (ESR). ·O2− and/or ·OOH was detected by ESR spectra of the spin adduct, DMPO–O2− (or DMPO–OOH). The concentration of DMPO–O2− was increased up to three times by the addition of DMSO. The half-life of DMPO–O2−, which is the time period to reduce to one-half of the initial intensity, also became about 70 times longer than that in the system without DMSO. These results suggest that the short half-life of DMPO–O2− that has been reported is attributable to the partial reaction of hydroxyl radical (·OH) with DMPO–O2−. Consequently quantitative analysis of ·O2− was possible in the presence of DMSO (>0.35 M). Under these conditions, kinetic approaches show that the generation of ·O2− in the HPX-XOD reaction is a first-order reaction and that its rate constant is 6.9 × 10−8 M s−1. Finally, the competitive reaction of DMPO and SOD toward ·O2− was shown to be one unit of superoxide dismutase (Cu/Zn– SOD) scavenging ·O2− by the rate constant of 7.0 × 10−6 M min−1. This method, which can be used for measurement of SOD-like and SOD-minic activity, should be called the superoxide anion scavenging activity method.
ISSN:0009-2673
1348-0634
DOI:10.1246/bcsj.67.1085