The East Australian Current and Property Transport at 27°S from 2012 to 2013

Abstract The East Australian Current (EAC) is the complex and highly energetic poleward western boundary current of the South Pacific Ocean. A full-depth current meter and property (temperature and salinity) mooring array was deployed from the continental shelf to the abyssal waters off Brisbane Aus...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical oceanography Vol. 46; no. 3; pp. 993 - 1008
Main Authors Sloyan, Bernadette M, Ridgway, Ken R, Cowley, Rebecca
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The East Australian Current (EAC) is the complex and highly energetic poleward western boundary current of the South Pacific Ocean. A full-depth current meter and property (temperature and salinity) mooring array was deployed from the continental shelf to the abyssal waters off Brisbane Australia (27°S) for 18 months from April 2012 to August 2013. The EAC mooring array is an essential component of the Australian Integrated Marine Observing System (IMOS). During this period the EAC was coherent with an eddy kinetic to mean kinetic energy ratio of less than 1. The 18-month, mean, poleward-only mass transport above 2000 m is 22.1 ± 7.5 Sverdrups (Sv; 1 Sv ≡ 10 6 m 3 s −1 ). The mean, poleward-only heat transport and flow-weighted temperature above 2000 m are −1.35 ± 0.42 PW and 15.33°C, respectively. A difference in the poleward-only and net poleward mass and heat transports above 2000 m of 6.3 Sv and 0.24 PW reflects the presence of an equatorward EAC retroflection at the eastern (offshore) end of the mooring array. A complex empirical orthogonal function (EOF) analysis of the along-slope velocity anomalies finds that the first two modes explain 72.1% of the velocity variance. Mode 1 is dominant at periods of approximately 60 days, and mode 2 is dominant at periods of 120 days. These dominant periods agree with previous studies in the Tasman Sea south of 27°S and suggest that variability of the EAC in the Tasman Sea may be linked to variability north of 27°S.
ISSN:0022-3670
1520-0485
DOI:10.1175/JPO-D-15-0052.1