Weak and classical solutions of equations of motion for third grade fluids

This paper shows that the decomposition method with special basis, introduced by Cioranescu and Ouazar, allows one to prove global existence in time of the weak solution for the third grade fluids, in three dimensions, with small data. Contrary to the special case where $\vert\alpha_1+\alpha_2\vert\...

Full description

Saved in:
Bibliographic Details
Published inESAIM: Mathematical Modelling and Numerical Analysis Vol. 33; no. 6; pp. 1091 - 1120
Main Author Bernard, Jean Marie
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.11.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper shows that the decomposition method with special basis, introduced by Cioranescu and Ouazar, allows one to prove global existence in time of the weak solution for the third grade fluids, in three dimensions, with small data. Contrary to the special case where $\vert\alpha_1+\alpha_2\vert\le(24\nu\beta)^{1/2}$, studied by Amrouche and Cioranescu, the H1 norm of the velocity is not bounded for all data. This fact, which led others to think, in contradiction to this paper, that the method of decomposition could not apply to the general case of third grade, complicates substantially the proof of the existence of the solution. We also prove further regularity results by a method similar to that of Cioranescu and Girault for second grade fluids. This extension to the third grade fluids is not straightforward, because of a transport equation which is much more complex. Dans cet article, on montre que la méthode de décomposition avec base spéciale introduite par Cioranescu et Ouazar, permet de démontrer l'existence globale en temps de la solution faible pour les fluides de grade trois, en dimension trois, avec des données petites. Contrairement au cas particulier où $\vert\alpha_1+\alpha_2\vert\le (24\nu\beta)^{1/2}$, étudié par Amrouche et Cioranescu, la norme H1 de la vitesse n'est pas majorée pour toute donnée. Ce fait, qui conduisait à penser, en contradiction avec cet article, que la méthode de décomposition ne pouvait pas s'appliquer au cas général du grade trois, complique substantiellement la démonstration d'existence de la solution. On établit des résultats de régularité par une méthode similaire à celle de Cioranescu et Girault pour des fluides
Bibliography:PII:S0764583X99001363
istex:B3B0918EB96FAAFA52277061CD2A1B44C332B9A6
ark:/67375/80W-GF7ZG53D-J
publisher-ID:m2an869
ISSN:0764-583X
1290-3841
DOI:10.1051/m2an:1999136