The generalized maximum Tsallis entropy estimators and applications to the Portland cement dataset
Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-c...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 46; no. 4; pp. 3284 - 3293 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
21.04.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = Xβ + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement. |
---|---|
AbstractList | Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q -> 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = X[beta] + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement. Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = Xβ + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement. |
Author | Tabass, M. Sanei Borzadaran, G. R. Mohtashami |
Author_xml | – sequence: 1 givenname: M. Sanei surname: Tabass fullname: Tabass, M. Sanei organization: Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad – sequence: 2 givenname: G. R. Mohtashami surname: Borzadaran fullname: Borzadaran, G. R. Mohtashami email: grmohtashami@um.ac.ir organization: Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad |
BookMark | eNqFkE9rHCEYh6Uk0M2fjxAQcp5UR2dWySUhNG0g0Bw2Z3nH0dbF0am6tJtPH6ebXnJoT4L-np_v-5ygoxCDQeiCkitKBPlEWE-JpOKqJbRbrtpOyA9oRTvWNpxyeoRWS6ZZQh_RSc5bQggTXKzQsPlh8HcTTALvXsyIJ_jtpt2ENxm8dxmbUFKc99jk4iYoMWUMYcQwz95pKC6GjEvEpdY8xVT88qjNVDE8QoFsyhk6tuCzOX87T9Hz_efN3dfm8duXh7vbx0YzJkoje90P_diuWz0AAy4skVZz1g9GDKO0gxR2lHQt2xZI32nCrCaEaq6BcWkEO0WXh945xZ-7Oq_axl0K9UtFRd2cVzu8pq4PKZ1izslYpV35s0dJ4LyiRC1S1V-papGq3qRWuntHz6lqSfv_cjcHzgUb0wS_YvKjKrD3MdkEQbus2L8rXgGw_5GF |
CitedBy_id | crossref_primary_10_1007_s00500_022_06896_1 crossref_primary_10_1088_1742_6596_1053_1_012021 crossref_primary_10_1007_s00500_021_05805_2 crossref_primary_10_1088_1742_6596_1053_1_012103 crossref_primary_10_1007_s11222_016_9678_6 crossref_primary_10_1080_03610918_2022_2082475 |
Cites_doi | 10.1021/ie50275a002 10.2307/1883197 10.1080/000368400322976 10.1007/s00362-006-0037-0 10.1007/s100510051080 10.2174/1876527001103010013 10.1080/03610918.2010.508861 10.1016/S0960-0779(01)00019-4 10.2307/2648789 10.1081/STA-120019959 10.1103/PhysRev.106.620 10.1016/S0304-4076(01)00120-8 10.1080/03610910802592838 10.1002/j.1538-7305.1948.tb01338.x 10.1007/BF01016429 10.3390/e13071267 10.1063/1.3061079 |
ContentType | Journal Article |
Copyright | 2017 Taylor & Francis Group, LLC 2017 2017 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2017 Taylor & Francis Group, LLC 2017 – notice: 2017 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2015.1082589 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 3293 |
ExternalDocumentID | 4321994699 10_1080_03610918_2015_1082589 1082589 |
Genre | Article Feature |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-96c6b6d272cba3a48f09fc436be8bd9fb98fd917922a065c03fc001c4ca349e83 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 04:48:27 EDT 2025 Tue Jul 01 03:09:56 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Wed Dec 25 09:01:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-96c6b6d272cba3a48f09fc436be8bd9fb98fd917922a065c03fc001c4ca349e83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1891840154 |
PQPubID | 186203 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1080_03610918_2015_1082589 crossref_primary_10_1080_03610918_2015_1082589 informaworld_taylorfrancis_310_1080_03610918_2015_1082589 proquest_journals_1891840154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-21 |
PublicationDateYYYYMMDD | 2017-04-21 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Yitzhaki S. (cit0029); 8 Yitzhaki S. (cit0030) Pukelsheim F. (cit0017); 48 cit0019 cit0018 cit0015 cit0013 cit0014 cit0022 cit0001 Judge G. G. (cit0009) cit0023 Golan A. (cit0004) cit0021 Kacranlar S. (cit0010); 61 Shen E. Z. (cit0020); 104 cit0028 Hald A. (cit0006) cit0007 cit0026 cit0005 Kleiber C. H. (cit0012) cit0027 cit0002 Neter J. (cit0016) cit0024 Vallianatos F. (cit0025) |
References_xml | – volume: 104 start-page: 289 ident: cit0020 publication-title: Journal Application Economics – ident: cit0026 doi: 10.1021/ie50275a002 – volume: 48 start-page: 88 issue: 4 ident: cit0017 publication-title: The American Statistician – ident: cit0027 doi: 10.2307/1883197 – ident: cit0002 doi: 10.1080/000368400322976 – volume-title: Maximum Entropy Econometrics: Robust Estimation with Limited Data ident: cit0004 – ident: cit0018 doi: 10.1007/s00362-006-0037-0 – ident: cit0022 doi: 10.1007/s100510051080 – ident: cit0012 publication-title: Invited paper in Gini Lorenz Centennial Conference – ident: cit0001 doi: 10.2174/1876527001103010013 – ident: cit0014 doi: 10.1080/03610918.2010.508861 – ident: cit0024 doi: 10.1016/S0960-0779(01)00019-4 – ident: cit0028 doi: 10.2307/2648789 – ident: cit0013 doi: 10.1081/STA-120019959 – ident: cit0007 doi: 10.1103/PhysRev.106.620 – ident: cit0005 doi: 10.1016/S0304-4076(01)00120-8 – ident: cit0015 doi: 10.1080/03610910802592838 – start-page: 401 issue: 3 ident: cit0030 publication-title: Metron – volume-title: Recovering Information in the Case of Ill-Posed Inverse Problems with Noise. Mimeo Department of Agricultural and Natural Resources ident: cit0009 – ident: cit0019 doi: 10.1002/j.1538-7305.1948.tb01338.x – volume-title: Applied Linear Statistical Models ident: cit0016 – volume: 8 start-page: 13 ident: cit0029 publication-title: Research on Economic Inequality – ident: cit0023 doi: 10.1007/BF01016429 – ident: cit0021 doi: 10.3390/e13071267 – volume-title: Statistical Theory With Engineering Applications ident: cit0006 doi: 10.1063/1.3061079 – volume: 61 start-page: 443 ident: cit0010 publication-title: The Indian Journal of Statistics, Series B – start-page: 108 ident: cit0025 publication-title: Europhysics Letters |
SSID | ssj0003848 |
Score | 2.108647 |
Snippet | Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology... Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q -> 1. Using Tsallis entropy, an alternative estimation methodology... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3284 |
SubjectTerms | Cement Economic models Entropy Generalized maximum Tsallis entropy Least-square estimator Linear regression model Multicollinearity Primary 62B10 Regression analysis Secondary 94A17 Support points |
Title | The generalized maximum Tsallis entropy estimators and applications to the Portland cement dataset |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2015.1082589 https://www.proquest.com/docview/1891840154 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6FcikHHgHUQkF74GY5snfXzvqIEFAhtQfqSr1Zu2ubWoqTKHYkyH_gPzP7sGOTSuVxsSI7fijfl5nZ8cw3CL0TJFc8L5gvBIt9VpLIT0RMfBkX4PxEWM6lzndcXMbn1-zLTXQzmfwcVC1tWzlTuzv7Sv4FVdgHuOou2b9Atr8o7IDPgC9sAWHY_jHG36xudLWDyLEW36t6W3tpIxaLqvF05na1_uFpJY1amLk6Rpt18NK6iz11RenC9LiZfKGnK0ebYpS4H_WSmDJa3Y1khZ5n3hXc2dbVda1y6-34NX8qwGXa5DZ8XSyLqs8FrDY7kYuNTcZ-nnlfZ2BsbuEJbkVdDRMT4OwC5pN9YiI9mBEyMG00Dn2IVKzlLTrTS3wWWhmszja79GQ1TDwYQ0uJnSznnDYlds7igUNwFZRUq8qHppQv0jtJZAcX_aa17Y48QA8JrDq02aTBZe_YKTfD2PqH7xrCtFT7XTcYhTojIdwDx2-imfQpeuyWIfi95dQzNCmWU_SkG_GBncWfokcXvaxvM0XHVz3gz5EE9uEB-7BjH3bsw459eM8-DMzAQ_bhdoXh-rhjH7bsw459L9D1p4_ph3PfTezwFaW89ZNYxTLOyZwoKahgvAySUjEay4LLPCllwss8AR9AiIDYVwW0VBAnKaYEZUnB6Ut0tFwtixOEOYtg6UtonuQKFtVczAMFhiPgkkuIuvNTxLofN1NOzl5PVVlkYad66zDJNCaZw-QUzfrT1lbP5b4TkiFyWWtoXVpGZ_Sec886mDNnNpos5InOqsDS5dV_XPo1Ot7_587QUbvZFm8gPG7lW0PaX0kctxQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOVAOFAKIQgEfuDpsbK9jHxGiCtDklEq9WX6iiDwqdiO1_fV49hGlINRDryuN5Z0dz8w3O_4G4KNlwasQBbVWSCoSK6m2klEnYw5-dpTGDusd05mcnIvvF-XF3l0YbKtEDJ1aoojGV-PhxmJ03xL3KXtd5LNsOrNKfMRKpR_Co1LLMdo6L2Y7b8xVM0ELRSjK9Ld4_rfMrfh0i730H2_dhKDTI_D95tvOk1_Dbe2G_uYvXsf7vd0zeNplqORza1LP4UFcD-Con_5AOmcwgCfTHeNrNYBDzFpb0ucX4LLxkZ8tofXiJgaysleL1XZF5pVdLhcVwZLy5vKaIMXHCmF_RfJ-yf7fdFJvSF6fYKsrdl8S3xQyCba0VrF-CeenX-dfJrQb5kB9RsE11dJLJwMbM-8st0KlQicvuHRRuaCT0yqFjB01YzanRb7gyecQ6oW3XOio-Cs4WG_W8TUQJcqMihgPOviMt5QdFz7bVKGccjkhC8cg-k9ofMd0jgM3lmbUE6J2KjaoYtOp-BiGO7HLlurjLgG9bx-mbmosqR2IYvgdsie9MZnOa1RmpDQC7pzVvrnH0h_g8WQ-PTNn32Y_3sIhwzykEJSNTuCg_r2N73IWVbv3zTH5AwfHDng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKrgAO22FVDa-sDV26zjeO0jol0BLaseQOJm-Vmtui-RrAT8ejx5rKBVxYFrpLEcZzyvfPMNwKFh3kkfODWGC8ojK6gyglErQnJ-ZhCHFusd52NxcsnProoOTVi2sErMoWNDFFHbarzcSx87RNzXZHSRzrIGZhX4iBVSvYRXAhstsYsjG6-NcS7rAVooQlGma-L53zKP3NMj8tJ_jHXtgUY7YLu9N8CTP_1VZfvu7i9ax2e93BvYbuNTctQo1Ft4EeY92OlmP5DWFPRg63zN91r2YBNj1oby-R3YpHrkd0NnPbkLnszMzWS2mpGL0kynk5JgQXmxvCVI8DHDpL8kabvk4b90Ui1IWp8g0BWxl8TVZUyCgNYyVO_hcvT94viEtqMcqEs5cEWVcMIKz4bMWZMbLmOmouO5sEFar6JVMvqUOSrGTAqKXJZHlxyo487kXAWZf4CN-WIedoFIXqSciOVeeZeyLWmGmUsalUkrbQrH_B7w7gtq1_Kc47iNqR50dKjtEWs8Yt0e8R7012LLhujjKQH1UD10VVdYYjMORedPyB50uqRbm1HqgVSYbqeYdv8ZS3-B17--jfTP0_GPj7DJMAjJOGWDA9iorlfhUwqhKvu5viT3na8NHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+generalized+maximum+Tsallis+entropy+estimators+and+applications+to+the+Portland+cement+dataset&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Tabass%2C+M.+Sanei&rft.au=Borzadaran%2C+G.+R.+Mohtashami&rft.date=2017-04-21&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=46&rft.issue=4&rft.spage=3284&rft.epage=3293&rft_id=info:doi/10.1080%2F03610918.2015.1082589&rft.externalDocID=1082589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |