The generalized maximum Tsallis entropy estimators and applications to the Portland cement dataset

Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-c...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 46; no. 4; pp. 3284 - 3293
Main Authors Tabass, M. Sanei, Borzadaran, G. R. Mohtashami
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 21.04.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = Xβ + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement.
AbstractList Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q -> 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = X[beta] + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement.
Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = Xβ + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement.
Author Tabass, M. Sanei
Borzadaran, G. R. Mohtashami
Author_xml – sequence: 1
  givenname: M. Sanei
  surname: Tabass
  fullname: Tabass, M. Sanei
  organization: Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad
– sequence: 2
  givenname: G. R. Mohtashami
  surname: Borzadaran
  fullname: Borzadaran, G. R. Mohtashami
  email: grmohtashami@um.ac.ir
  organization: Department of Statistics, School of Mathematical Sciences, Ferdowsi University of Mashhad
BookMark eNqFkE9rHCEYh6Uk0M2fjxAQcp5UR2dWySUhNG0g0Bw2Z3nH0dbF0am6tJtPH6ebXnJoT4L-np_v-5ygoxCDQeiCkitKBPlEWE-JpOKqJbRbrtpOyA9oRTvWNpxyeoRWS6ZZQh_RSc5bQggTXKzQsPlh8HcTTALvXsyIJ_jtpt2ENxm8dxmbUFKc99jk4iYoMWUMYcQwz95pKC6GjEvEpdY8xVT88qjNVDE8QoFsyhk6tuCzOX87T9Hz_efN3dfm8duXh7vbx0YzJkoje90P_diuWz0AAy4skVZz1g9GDKO0gxR2lHQt2xZI32nCrCaEaq6BcWkEO0WXh945xZ-7Oq_axl0K9UtFRd2cVzu8pq4PKZ1izslYpV35s0dJ4LyiRC1S1V-papGq3qRWuntHz6lqSfv_cjcHzgUb0wS_YvKjKrD3MdkEQbus2L8rXgGw_5GF
CitedBy_id crossref_primary_10_1007_s00500_022_06896_1
crossref_primary_10_1088_1742_6596_1053_1_012021
crossref_primary_10_1007_s00500_021_05805_2
crossref_primary_10_1088_1742_6596_1053_1_012103
crossref_primary_10_1007_s11222_016_9678_6
crossref_primary_10_1080_03610918_2022_2082475
Cites_doi 10.1021/ie50275a002
10.2307/1883197
10.1080/000368400322976
10.1007/s00362-006-0037-0
10.1007/s100510051080
10.2174/1876527001103010013
10.1080/03610918.2010.508861
10.1016/S0960-0779(01)00019-4
10.2307/2648789
10.1081/STA-120019959
10.1103/PhysRev.106.620
10.1016/S0304-4076(01)00120-8
10.1080/03610910802592838
10.1002/j.1538-7305.1948.tb01338.x
10.1007/BF01016429
10.3390/e13071267
10.1063/1.3061079
ContentType Journal Article
Copyright 2017 Taylor & Francis Group, LLC 2017
2017 Taylor & Francis Group, LLC
Copyright_xml – notice: 2017 Taylor & Francis Group, LLC 2017
– notice: 2017 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2015.1082589
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 3293
ExternalDocumentID 4321994699
10_1080_03610918_2015_1082589
1082589
Genre Article
Feature
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-96c6b6d272cba3a48f09fc436be8bd9fb98fd917922a065c03fc001c4ca349e83
ISSN 0361-0918
IngestDate Wed Aug 13 04:48:27 EDT 2025
Tue Jul 01 03:09:56 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Wed Dec 25 09:01:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-96c6b6d272cba3a48f09fc436be8bd9fb98fd917922a065c03fc001c4ca349e83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1891840154
PQPubID 186203
PageCount 10
ParticipantIDs crossref_citationtrail_10_1080_03610918_2015_1082589
crossref_primary_10_1080_03610918_2015_1082589
informaworld_taylorfrancis_310_1080_03610918_2015_1082589
proquest_journals_1891840154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-21
PublicationDateYYYYMMDD 2017-04-21
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-21
  day: 21
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Yitzhaki S. (cit0029); 8
Yitzhaki S. (cit0030)
Pukelsheim F. (cit0017); 48
cit0019
cit0018
cit0015
cit0013
cit0014
cit0022
cit0001
Judge G. G. (cit0009)
cit0023
Golan A. (cit0004)
cit0021
Kacranlar S. (cit0010); 61
Shen E. Z. (cit0020); 104
cit0028
Hald A. (cit0006)
cit0007
cit0026
cit0005
Kleiber C. H. (cit0012)
cit0027
cit0002
Neter J. (cit0016)
cit0024
Vallianatos F. (cit0025)
References_xml – volume: 104
  start-page: 289
  ident: cit0020
  publication-title: Journal Application Economics
– ident: cit0026
  doi: 10.1021/ie50275a002
– volume: 48
  start-page: 88
  issue: 4
  ident: cit0017
  publication-title: The American Statistician
– ident: cit0027
  doi: 10.2307/1883197
– ident: cit0002
  doi: 10.1080/000368400322976
– volume-title: Maximum Entropy Econometrics: Robust Estimation with Limited Data
  ident: cit0004
– ident: cit0018
  doi: 10.1007/s00362-006-0037-0
– ident: cit0022
  doi: 10.1007/s100510051080
– ident: cit0012
  publication-title: Invited paper in Gini Lorenz Centennial Conference
– ident: cit0001
  doi: 10.2174/1876527001103010013
– ident: cit0014
  doi: 10.1080/03610918.2010.508861
– ident: cit0024
  doi: 10.1016/S0960-0779(01)00019-4
– ident: cit0028
  doi: 10.2307/2648789
– ident: cit0013
  doi: 10.1081/STA-120019959
– ident: cit0007
  doi: 10.1103/PhysRev.106.620
– ident: cit0005
  doi: 10.1016/S0304-4076(01)00120-8
– ident: cit0015
  doi: 10.1080/03610910802592838
– start-page: 401
  issue: 3
  ident: cit0030
  publication-title: Metron
– volume-title: Recovering Information in the Case of Ill-Posed Inverse Problems with Noise. Mimeo Department of Agricultural and Natural Resources
  ident: cit0009
– ident: cit0019
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume-title: Applied Linear Statistical Models
  ident: cit0016
– volume: 8
  start-page: 13
  ident: cit0029
  publication-title: Research on Economic Inequality
– ident: cit0023
  doi: 10.1007/BF01016429
– ident: cit0021
  doi: 10.3390/e13071267
– volume-title: Statistical Theory With Engineering Applications
  ident: cit0006
  doi: 10.1063/1.3061079
– volume: 61
  start-page: 443
  ident: cit0010
  publication-title: The Indian Journal of Statistics, Series B
– start-page: 108
  ident: cit0025
  publication-title: Europhysics Letters
SSID ssj0003848
Score 2.108647
Snippet Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology...
Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q -> 1. Using Tsallis entropy, an alternative estimation methodology...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3284
SubjectTerms Cement
Economic models
Entropy
Generalized maximum Tsallis entropy
Least-square estimator
Linear regression model
Multicollinearity
Primary 62B10
Regression analysis
Secondary 94A17
Support points
Title The generalized maximum Tsallis entropy estimators and applications to the Portland cement dataset
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2015.1082589
https://www.proquest.com/docview/1891840154
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6FcikHHgHUQkF74GY5snfXzvqIEFAhtQfqSr1Zu2ubWoqTKHYkyH_gPzP7sGOTSuVxsSI7fijfl5nZ8cw3CL0TJFc8L5gvBIt9VpLIT0RMfBkX4PxEWM6lzndcXMbn1-zLTXQzmfwcVC1tWzlTuzv7Sv4FVdgHuOou2b9Atr8o7IDPgC9sAWHY_jHG36xudLWDyLEW36t6W3tpIxaLqvF05na1_uFpJY1amLk6Rpt18NK6iz11RenC9LiZfKGnK0ebYpS4H_WSmDJa3Y1khZ5n3hXc2dbVda1y6-34NX8qwGXa5DZ8XSyLqs8FrDY7kYuNTcZ-nnlfZ2BsbuEJbkVdDRMT4OwC5pN9YiI9mBEyMG00Dn2IVKzlLTrTS3wWWhmszja79GQ1TDwYQ0uJnSznnDYlds7igUNwFZRUq8qHppQv0jtJZAcX_aa17Y48QA8JrDq02aTBZe_YKTfD2PqH7xrCtFT7XTcYhTojIdwDx2-imfQpeuyWIfi95dQzNCmWU_SkG_GBncWfokcXvaxvM0XHVz3gz5EE9uEB-7BjH3bsw459eM8-DMzAQ_bhdoXh-rhjH7bsw459L9D1p4_ph3PfTezwFaW89ZNYxTLOyZwoKahgvAySUjEay4LLPCllwss8AR9AiIDYVwW0VBAnKaYEZUnB6Ut0tFwtixOEOYtg6UtonuQKFtVczAMFhiPgkkuIuvNTxLofN1NOzl5PVVlkYad66zDJNCaZw-QUzfrT1lbP5b4TkiFyWWtoXVpGZ_Sec886mDNnNpos5InOqsDS5dV_XPo1Ot7_587QUbvZFm8gPG7lW0PaX0kctxQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOVAOFAKIQgEfuDpsbK9jHxGiCtDklEq9WX6iiDwqdiO1_fV49hGlINRDryuN5Z0dz8w3O_4G4KNlwasQBbVWSCoSK6m2klEnYw5-dpTGDusd05mcnIvvF-XF3l0YbKtEDJ1aoojGV-PhxmJ03xL3KXtd5LNsOrNKfMRKpR_Co1LLMdo6L2Y7b8xVM0ELRSjK9Ld4_rfMrfh0i730H2_dhKDTI_D95tvOk1_Dbe2G_uYvXsf7vd0zeNplqORza1LP4UFcD-Con_5AOmcwgCfTHeNrNYBDzFpb0ucX4LLxkZ8tofXiJgaysleL1XZF5pVdLhcVwZLy5vKaIMXHCmF_RfJ-yf7fdFJvSF6fYKsrdl8S3xQyCba0VrF-CeenX-dfJrQb5kB9RsE11dJLJwMbM-8st0KlQicvuHRRuaCT0yqFjB01YzanRb7gyecQ6oW3XOio-Cs4WG_W8TUQJcqMihgPOviMt5QdFz7bVKGccjkhC8cg-k9ofMd0jgM3lmbUE6J2KjaoYtOp-BiGO7HLlurjLgG9bx-mbmosqR2IYvgdsie9MZnOa1RmpDQC7pzVvrnH0h_g8WQ-PTNn32Y_3sIhwzykEJSNTuCg_r2N73IWVbv3zTH5AwfHDng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKrgAO22FVDa-sDV26zjeO0jol0BLaseQOJm-Vmtui-RrAT8ejx5rKBVxYFrpLEcZzyvfPMNwKFh3kkfODWGC8ojK6gyglErQnJ-ZhCHFusd52NxcsnProoOTVi2sErMoWNDFFHbarzcSx87RNzXZHSRzrIGZhX4iBVSvYRXAhstsYsjG6-NcS7rAVooQlGma-L53zKP3NMj8tJ_jHXtgUY7YLu9N8CTP_1VZfvu7i9ax2e93BvYbuNTctQo1Ft4EeY92OlmP5DWFPRg63zN91r2YBNj1oby-R3YpHrkd0NnPbkLnszMzWS2mpGL0kynk5JgQXmxvCVI8DHDpL8kabvk4b90Ui1IWp8g0BWxl8TVZUyCgNYyVO_hcvT94viEtqMcqEs5cEWVcMIKz4bMWZMbLmOmouO5sEFar6JVMvqUOSrGTAqKXJZHlxyo487kXAWZf4CN-WIedoFIXqSciOVeeZeyLWmGmUsalUkrbQrH_B7w7gtq1_Kc47iNqR50dKjtEWs8Yt0e8R7012LLhujjKQH1UD10VVdYYjMORedPyB50uqRbm1HqgVSYbqeYdv8ZS3-B17--jfTP0_GPj7DJMAjJOGWDA9iorlfhUwqhKvu5viT3na8NHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+generalized+maximum+Tsallis+entropy+estimators+and+applications+to+the+Portland+cement+dataset&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Tabass%2C+M.+Sanei&rft.au=Borzadaran%2C+G.+R.+Mohtashami&rft.date=2017-04-21&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=46&rft.issue=4&rft.spage=3284&rft.epage=3293&rft_id=info:doi/10.1080%2F03610918.2015.1082589&rft.externalDocID=1082589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon