The generalized maximum Tsallis entropy estimators and applications to the Portland cement dataset

Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-c...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 46; no. 4; pp. 3284 - 3293
Main Authors Tabass, M. Sanei, Borzadaran, G. R. Mohtashami
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 21.04.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tsallis entropy is a generalized form of entropy and tends to be Shannon entropy when q → 1. Using Tsallis entropy, an alternative estimation methodology (generalized maximum Tsallis entropy) is introduced and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We describe the generalized maximum Tsallis entropy and for q = 2 we call that GMET2 estimator. We apply the GMET2 estimator for estimating the linear regression model Y = Xβ + e where the design matrix X is subject to severe multicollinearity. We compared the GMET2, generalized maximum entropy (GME), ordinary least-square (OLS), and inequality restricted least-square (IRLS) estimators on the analyzed dataset on Portland cement.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0361-0918
1532-4141
DOI:10.1080/03610918.2015.1082589