Parametric inferences using dependent competing risks data with partially observed failure causes from MOBK distribution under unified hybrid censoring
In this communication, various statistical inferential procedures for estimating unknown model parameters are investigated via utilizing partially observed dependent competing risks data under the unified hybrid censoring scheme when the latent failure times follow Marshall-Olkin bivariate Kumaraswa...
Saved in:
Published in | Journal of statistical computation and simulation Vol. 94; no. 2; pp. 376 - 399 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
22.01.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this communication, various statistical inferential procedures for estimating unknown model parameters are investigated via utilizing partially observed dependent competing risks data under the unified hybrid censoring scheme when the latent failure times follow Marshall-Olkin bivariate Kumaraswamy distribution. The existence and uniqueness of the maximum likelihood estimators (MLEs) have been established. By using asymptotic normality property of MLE, the approximate confidence intervals have been constructed via observed Fisher information matrix. Moreover, Bayes estimates and the highest posterior density credible intervals have been computed under a highly flexible gamma-Dirichlet prior distribution by using Markov chain Monte Carlo technique. In addition, to compare the performance of proposed methods, a Monte Carlo simulation has been carried out. Finally, a real-life data set has been analysed to illustrate the operability and applicability of the methods considered. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949655.2023.2249165 |