NOISE FROM SUPERSONIC COAXIAL JETS, PART 1: MEAN FLOW PREDICTIONS

Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not des...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 200; no. 5; pp. 643 - 663
Main Authors Dahl, M.D., Morris, P.J.
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 13.03.1997
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.
ISSN:0022-460X
1095-8568
DOI:10.1006/jsvi.1996.0723