EFFICIENT ASSESSMENT OF MODIFIED NUCLEOSIDE STABILITY UNDER CONDITIONS OF AUTOMATED OLIGONUCLEOTIDE SYNTHESIS: CHARACTERIZATION OF THE OXIDATION AND OXIDATIVE DESULFURIZATION OF 2-THIOURIDINE
In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry o...
Saved in:
Published in | Nucleosides, nucleotides & nucleic acids Vol. 20; no. 10-11; pp. 1871 - 1879 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis Group
31.12.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-7770 1532-2335 |
DOI: | 10.1081/NCN-100107198 |