Cytoplasmic signaling pathways that regulate cardiac hypertrophy
This review discusses the rapidly progressing field of cardiomyocyte signal transduction and the regulation of the hypertrophic response. When stimulated by a wide array of neurohumoral factors or when faced with an increase in ventricular-wall tension, individual cardiomyocytes undergo hypertrophic...
Saved in:
Published in | Annual review of physiology Vol. 63; no. 1; pp. 391 - 426 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Annual Reviews, Inc
01.01.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This review discusses the rapidly progressing field of cardiomyocyte signal transduction and the regulation of the hypertrophic response. When stimulated by a wide array of neurohumoral factors or when faced with an increase in ventricular-wall tension, individual cardiomyocytes undergo hypertrophic growth as an adaptive response. However, sustained cardiac hypertrophy is a leading predictor of future heart failure. A growing number of intracellular signaling pathways have been characterized as important transducers of the hypertrophic response, including specific G protein isoforms, low-molecular-weight GTPases (Ras, RhoA, and Rac), mitogen-activated protein kinase cascades, protein kinase C, calcineurin, gp130-signal transducer and activator of transcription, insulin-like growth factor I receptor pathway, fibroblast growth factor and transforming growth factor beta receptor pathways, and many others. Each of these signaling pathways has been implicated as a hypertrophic transducer, which collectively suggests an emerging paradigm whereby multiple pathways operate in concert to orchestrate a hypertrophic response |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0066-4278 1545-1585 |
DOI: | 10.1146/annurev.physiol.63.1.391 |