Regression to the mean: Estimation and adjustment under the bivariate normal distribution

Regression to the mean (RTM) is a statistical phenomenon that happens when subjects having relatively high or low observations upon remeasurement are found closer to the population mean. RTM can erroneously influence the conclusion in a pre-post study design. Expressions are available for quantifyin...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 52; no. 19; pp. 6972 - 6990
Main Authors Khan, Manzoor, Olivier, Jake
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Regression to the mean (RTM) is a statistical phenomenon that happens when subjects having relatively high or low observations upon remeasurement are found closer to the population mean. RTM can erroneously influence the conclusion in a pre-post study design. Expressions are available for quantifying RTM when the distribution of pre-post variables is bivariate normal; however, these methods assume the pre and post observations are identically distributed and strictly positively correlated. This study generalizes previous results to include non-stationary, normally distributed random variables that are potentially negatively correlated, and also provides the decomposition of the conditional mean difference into RTM and unbiased intervention effects. In addition, the maximum likelihood estimators are derived and the unbiasedness, consistency and normality of these estimators are established. A simulation study is conducted to asses the accuracy of estimating the RTM and intervention effects using existing and the proposed methods. Data on the blood lead level in both intervention and placebo groups are used for decomposing the total change in blood lead level on pre-post occasions into RTM and intervention effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0926
1532-415X
DOI:10.1080/03610926.2022.2037645