A general quadrature formula using zeros of spherical Bessel functions as nodes
We obtain, for entire functions of exponential type satisfying certain integrability conditions, a quadrature formula using the zeros of spherical Bessel functions as nodes. We deduce from this quadrature formula a result of Olivier and Rahman, which refines itself a formula of Boas. Nous obtenons,...
Saved in:
Published in | ESAIM: Mathematical Modelling and Numerical Analysis Vol. 33; no. 5; pp. 879 - 893 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.09.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We obtain, for entire functions of exponential type satisfying certain integrability conditions, a quadrature formula using the zeros of spherical Bessel functions as nodes. We deduce from this quadrature formula a result of Olivier and Rahman, which refines itself a formula of Boas.
Nous obtenons, pour les fonctions entières de type exponentiel satisfaisant certaines conditions d'intégrabilité, une formule de quadrature utilisant les zéros des fonctions de Bessel sphériques comme nœuds. Nous déduisons de cette formule un résultat de Olivier et Rahman, lequel est lui-même un raffinement d'une formule préalablement obtenue par Boas. |
---|---|
Bibliography: | istex:67AF3A338E709A501A6FB3682F6BFB02A0755908 publisher-ID:m2an877 PII:S0764583X99001247 ark:/67375/80W-F1P8655C-Z |
ISSN: | 0764-583X 1290-3841 |
DOI: | 10.1051/m2an:1999124 |