Absorption and emission profiles of unresolved arrays near local thermodynamic equilibrium
The absorption and emission arrays in the unresolved transition array (UTA) and super transition array (STA) models are usually assumed to have the same Gaussian spectral shape. It is shown, starting from a Boltzmann population distribution, that the assumption of profile identity for both absorptio...
Saved in:
Published in | Journal of quantitative spectroscopy & radiative transfer Vol. 81; no. 1; pp. 255 - 263 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The absorption and emission arrays in the unresolved transition array (UTA) and super transition array (STA) models are usually assumed to have the same Gaussian spectral shape. It is shown, starting from a Boltzmann population distribution, that the assumption of profile identity for both absorption and emission is inconsistent with Kirchhoff's law. A correcting formula is established. It is extended to the cases where one or two effective population temperatures are involved. Examples are shown where the effect is noticeable. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-4073 1879-1352 |
DOI: | 10.1016/S0022-4073(03)00078-5 |