Multi-scale damage modeling of 3D orthogonal woven carbon-carbon composite at elevated temperatures

This paper presents a multi-scale structure modeling scheme to analyze the damage behaviors of three-dimensional orthogonal Carbon/Carbon (C/C) composites subject to uniaxial tension at high temperatures. The multi-scale structure model includes a micro-scale and a meso-scale structure model with pe...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal stresses Vol. 42; no. 6; pp. 787 - 800
Main Authors Shigang, Ai, Yinwei, Ma, Daining, Fang
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.06.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a multi-scale structure modeling scheme to analyze the damage behaviors of three-dimensional orthogonal Carbon/Carbon (C/C) composites subject to uniaxial tension at high temperatures. The multi-scale structure model includes a micro-scale and a meso-scale structure model with periodic boundary conditions to homogenize the heterogeneous fiber/matrix system into unit cells. The micro-scale model predicts the mechanical properties at the fiber tow scale in the three orthogonal directions (x, y and z). The output results by the micro-scale simulations are then incorporated in the meso-scale model to demonstrate the locations of stress propagation and the progressive failure behavior of the 3D C/C composite. Based on the numerical approaches, uniaxial tensile strengths of the 3D C/C composite are calculated from 300 to 2500 K, and its temperature dependences are discussed. The current applied multi-scale models provide an efficient approach to predict the tensile strength of 3D textile composites, and will give some highlights for the design of 3D C/C composite components.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0149-5739
1521-074X
DOI:10.1080/01495739.2019.1593906