DTS-SNN: Spiking Neural Networks with Dynamic Time-Surfaces

Convolution helps spiking neural networks (SNNs) capture the spatio-temporal structures of neuromorphic (event) data as evident in the convolution-based SNNs (C-SNNs) with the state-of-the-art classification-accuracies on various datasets. However, the efficacy aside, the efficiency of C-SNN is ques...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Yoo, Donghyung, Jeong, Doo Seok
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Convolution helps spiking neural networks (SNNs) capture the spatio-temporal structures of neuromorphic (event) data as evident in the convolution-based SNNs (C-SNNs) with the state-of-the-art classification-accuracies on various datasets. However, the efficacy aside, the efficiency of C-SNN is questionable. In this regard, we propose SNNs with novel trainable dynamic time-surfaces (DTS-SNNs) as efficient alternatives to convolution. The novel dynamic time-surface proposed in this work features its high responsiveness to moving objects given the use of the zero-sum temporal kernel that is motivated by the simple cells' receptive fields in the early stage visual pathway. We evaluated the performance and computational complexity of our DTS-SNNs on three real-world event-based datasets (DVS128 Gesture, Spiking Heidelberg dataset, N-Cars). The results highlight high classification accuracies and significant improvements in computational efficiency, e.g., merely 1.51% behind of the state-of-the-art result on DVS128 Gesture but a × 18 improvement in efficiency.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3209671