Nehari manifold for a Schrödinger equation with magnetic potential involving sign-changing weight function
We consider the following class of elliptic problems \[ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u ,\quad x\in {\mathbb{R}}^N, \] − Δ A u + u = a λ ( x ) | u | q − 2 u + b μ ( x ) | u | p − 2 u , x ∈ R N , where $ 1<q<2<p<2^*= \frac {2N}{N-2} $ 1 < q < 2 <...
Saved in:
Published in | Applicable analysis Vol. 103; no. 6; pp. 1036 - 1063 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
12.04.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider the following class of elliptic problems
\[ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u ,\quad x\in {\mathbb{R}}^N, \]
−
Δ
A
u
+
u
=
a
λ
(
x
)
|
u
|
q
−
2
u
+
b
μ
(
x
)
|
u
|
p
−
2
u
,
x
∈
R
N
,
where
$ 1<q<2<p<2^*= \frac {2N}{N-2} $
1
<
q
<
2
<
p
<
2
∗
=
2
N
N
−
2
$ N\geq ~3 $
N
≥
3
,
$ a_{\lambda }(x) $
a
λ
(
x
)
is a sign-changing weight function,
$ b_{\mu }(x) $
b
μ
(
x
)
is continuous,
$ \lambda > 0 $
λ
>
0
and
$ \mu > 0 $
μ
>
0
are real parameters,
$ u \in H^1_A({\mathbb {R}}^N) $
u
∈
H
A
1
(
R
N
)
and
$ A:{\mathbb {R}}^N \rightarrow {\mathbb {R}}^N $
A
:
R
N
→
R
N
is a magnetic potential. Exploring the relationship between the Nehari manifold and fibering maps, we will discuss the existence, multiplicity and regularity of solutions. |
---|---|
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036811.2023.2230257 |