Quantised polynomial filtering for nonlinear systems with missing measurements

This paper is concerned with the polynomial filtering problem for a class of nonlinear systems with quantisations and missing measurements. The nonlinear functions are approximated with polynomials of a chosen degree and the approximation errors are described as low-order polynomial terms with norm-...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of control Vol. 91; no. 10; pp. 2250 - 2260
Main Authors Liu, Yang, Wang, Zidong, Zhou, D. H.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.10.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper is concerned with the polynomial filtering problem for a class of nonlinear systems with quantisations and missing measurements. The nonlinear functions are approximated with polynomials of a chosen degree and the approximation errors are described as low-order polynomial terms with norm-bounded coefficients. The transmitted outputs are quantised by a logarithmic quantiser and are also subject to randomly missing measurements governed by a Bernoulli distributed sequence taking values on 0 or 1. Dedicated efforts are made to derive an upper bound of the filtering error covariance in the simultaneous presence of the polynomial approximation errors, the quantisations as well as the missing measurements at each time instant. Such an upper bound is then minimised through designing a suitable filter gain by solving a set of matrix equations. The filter design algorithm is recursive and therefore applicable for online computation. An illustrative example is exploited to show the effectiveness of the proposed algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7179
1366-5820
DOI:10.1080/00207179.2017.1337933