Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress

Using 3-month-old seedlings of Bruguiera gymnorrhiza (L.) Savigny and Kandelia candel (L.) Druce, we compared species differences in ionic homeostasis control between the two non-secretor mangrove species. A high salinity (400 mM NaCl, 4 weeks) resulted in a decline of the K(+)/Na(+) ratio in root a...

Full description

Saved in:
Bibliographic Details
Published inTree physiology Vol. 33; no. 1; pp. 81 - 95
Main Authors Lu, Yanjun, Li, Niya, Sun, Jian, Hou, Peichen, Jing, Xiaoshu, Zhu, Huipeng, Deng, Shurong, Han, Yansha, Huang, Xuxin, Ma, Xujun, Zhao, Nan, Zhang, Yuhong, Shen, Xin, Chen, Shaoliang
Format Journal Article
LanguageEnglish
Published Canada 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using 3-month-old seedlings of Bruguiera gymnorrhiza (L.) Savigny and Kandelia candel (L.) Druce, we compared species differences in ionic homeostasis control between the two non-secretor mangrove species. A high salinity (400 mM NaCl, 4 weeks) resulted in a decline of the K(+)/Na(+) ratio in root and leaf tissues, and the reduction was more pronounced in K. candel (41-66%) as compared with B. gymnorrhiza (5-36%). Salt-altered flux profiles of Na(+), K(+), H(+) and Ca(2+) in roots and effects of exogenous hydrogen peroxide (H(2)O(2)), nitric oxide (NO) and Ca(2+) on root ion fluxes were examined in seedlings that were hydroponically treated short term with 100 mM NaCl (ST, 24 h) and long term with 200 mM NaCl (LT, 7 days). Short term and LT salinity resulted in Na(+) efflux and a correspondingly increased H(+) influx in roots of both species, although a more pronounced effect was observed in B. gymnorrhiza. The salt-enhanced exchange of Na(+) with H(+) was obviously inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or sodium orthovanadate (a plasma membrane H(+)-ATPase inhibitor), indicating that the Na(+) efflux resulted from active Na(+) exclusion across the plasma membrane. Short term and LT salinity accelerated K(+) efflux in the two species, but K. candel exhibited a higher flux rate. The salt-induced K(+) efflux was markedly restricted by the K(+) channel blocker, tetraethylammonium chloride, indicating that the K(+) efflux is mediated by depolarization-activated channels, e.g., KORCs (outward rectifying K(+) channels) and NSCCs (non-selective cation channels). Exogenous H(2)O(2) application (10 mM) markedly increased the apparent Na(+) efflux and limited K(+) efflux in ST-treated roots, although H(2)O(2) caused a higher Na(+) efflux in B. gymnorrhiza roots. CaCl(2) (10 mM) reduced the efflux of K(+) in salinized roots of the two mangroves, but its enhancement of Na(+) efflux was found only in B. gymnorrhiza. Under ST treatment, sodium nitroprusside (SNP) (100 ∝M, an NO donor) increased Na(+) efflux at the root apex of the two species; however, its inhibition of K(+) loss was seen only in K. candel. Of note, NaCl caused an obvious influx of Ca(2+) in B. gymnorrhiza roots, which was enhanced by H(2)O(2) (10 mM). Therefore, the salt-induced Ca(2+) benefits B. gymnorrhiza in maintaining K(+)/Na(+) homeostasis under high external salinity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0829-318X
1758-4469
DOI:10.1093/treephys/tps119