Visualising ganglion cell layer based on image entropy optimisation for adaptive contrast enhancement

Optical coherence tomography cannot easily be used for visual identification of the ganglion cell layer (GCL) for diagnosing retinal diseases owing to the extremely low image contrast between adjacent layers. To solve this problem, the authors used a limit-clipping optimisation method along with the...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 56; no. 1; pp. 25 - 27
Main Authors Han, J.-H, Cha, J
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 09.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Optical coherence tomography cannot easily be used for visual identification of the ganglion cell layer (GCL) for diagnosing retinal diseases owing to the extremely low image contrast between adjacent layers. To solve this problem, the authors used a limit-clipping optimisation method along with the image entropy to enhance the image contrast of targeted layers. As a result, the GCL was successfully extracted using an intelligent tracking system without impacting the segmentation of other retinal layers and image morphology. The segmentation results were evaluated through comparisons with manual segmentation results provided by clinical experts. The results of this study should help realise simple and efficient discrimination of important retinal layers for the early diagnosis of glaucoma.
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2019.3006