Visualising ganglion cell layer based on image entropy optimisation for adaptive contrast enhancement
Optical coherence tomography cannot easily be used for visual identification of the ganglion cell layer (GCL) for diagnosing retinal diseases owing to the extremely low image contrast between adjacent layers. To solve this problem, the authors used a limit-clipping optimisation method along with the...
Saved in:
Published in | Electronics letters Vol. 56; no. 1; pp. 25 - 27 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
09.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Optical coherence tomography cannot easily be used for visual identification of the ganglion cell layer (GCL) for diagnosing retinal diseases owing to the extremely low image contrast between adjacent layers. To solve this problem, the authors used a limit-clipping optimisation method along with the image entropy to enhance the image contrast of targeted layers. As a result, the GCL was successfully extracted using an intelligent tracking system without impacting the segmentation of other retinal layers and image morphology. The segmentation results were evaluated through comparisons with manual segmentation results provided by clinical experts. The results of this study should help realise simple and efficient discrimination of important retinal layers for the early diagnosis of glaucoma. |
---|---|
ISSN: | 0013-5194 1350-911X 1350-911X |
DOI: | 10.1049/el.2019.3006 |