A Low-Power W-Band SiGe-HBT Double-Balanced Up-Conversion Mixer With an Integrated Second-Order IF Low-Pass Filter

A low-power <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band (75-110 GHz) double-balanced up-conversion mixer using a <inline-formula> <tex-math notation="LaTeX">0.13 \, \mu \text{m} </tex-math></inline-f...

Full description

Saved in:
Bibliographic Details
Published inIEEE microwave and wireless technology letters (Print) Vol. 34; no. 5; pp. 544 - 547
Main Authors Vardarli, Eren, Chen, Austin Ying-Kuang, Schroter, Michael
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A low-power <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band (75-110 GHz) double-balanced up-conversion mixer using a <inline-formula> <tex-math notation="LaTeX">0.13 \, \mu \text{m} </tex-math></inline-formula> SiGe:C BiCMOS technology with <inline-formula> <tex-math notation="LaTeX">f_{\mathrm {T}}/f_{\mathrm {max}}=250/370 \mathrm {GHz} </tex-math></inline-formula> is presented. The mixer includes ON-chip transformer baluns at the LO and RF ports for on-wafer characterization. At 91.3 GHz, the active mixer achieves a single sideband (SSB) power conversion gain of 4.1 dB with a 3-dB RF bandwidth (BW) of 30 GHz from 78.1 to 108.3 GHz, covering almost the entire <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band. The linearity performance, characterized by <inline-formula> <tex-math notation="LaTeX">\mathrm {OP}_{1\mathrm {dB}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">P_{\mathrm {sat}} </tex-math></inline-formula>, is 0.6 and 1.8 dBm, respectively while consuming only 11 mW from a 1.8 V supply. Moreover, a second-order IF <inline-formula> <tex-math notation="LaTeX">LC </tex-math></inline-formula> low-pass filter (LPF) with a cutoff frequency of 1.4 GHz is integrated to provide an additional spurious suppression of <inline-formula> <tex-math notation="LaTeX">\sim </tex-math></inline-formula>12 and <inline-formula> <tex-math notation="LaTeX">\sim </tex-math></inline-formula>19 dB at the second and third harmonic of the fundamental IF (i.e., 1.25 GHz). The overall chip area, including the IF LPF is <inline-formula> <tex-math notation="LaTeX">990 \times 540\,\,\mu \text{m} </tex-math></inline-formula> (0.53 mm2). To the best of authors' knowledge, the active up-conversion mixer achieves the lowest power consumption along with the highest <inline-formula> <tex-math notation="LaTeX">\mathrm {OP}_{1\mathrm {dB}}/P_{\mathrm {sat}} </tex-math></inline-formula> and 3-dB RF BW reported among all prior published <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band SiGe-HBT up-conversion mixers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2771-957X
2771-9588
DOI:10.1109/LMWT.2024.3379758