Stock Prediction Based on Optimized LSTM and GRU Models
Stock market prediction has always been an important research topic in the financial field. In the past, inventors used traditional analysis methods such as K-line diagrams to predict stock trends, but with the progress of science and technology and the development of market economy, the price trend...
Saved in:
Published in | Scientific programming Vol. 2021; pp. 1 - 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
29.09.2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Stock market prediction has always been an important research topic in the financial field. In the past, inventors used traditional analysis methods such as K-line diagrams to predict stock trends, but with the progress of science and technology and the development of market economy, the price trend of a stock is disturbed by various factors. The traditional analysis method is far from being able to resolve the stock price fluctuations in the hidden important information. So, the prediction accuracy is greatly reduced. In this paper, we design a new model for optimizing stock forecasting. We incorporate a range of technical indicators, including investor sentiment indicators and financial data, and perform dimension reduction on the many influencing factors of the retrieved stock price using depth learning LASSO and PCA approaches. In addition, a comparison of the performances of LSTM and GRU for stock market forecasting under various parameters was performed. Our experiments show that (1) both LSTM and GRU models can predict stock prices efficiently, not one better than the other, and (2) for the two different dimension reduction methods, both the two neural models using LASSO reflect better prediction ability than the models using PCA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1058-9244 1875-919X |
DOI: | 10.1155/2021/4055281 |