Existence and uniqueness of radial solution for the elliptic equation system in an annulus

This article discusses the existence and uniqueness of radial solution for the elliptic equation system <disp-formula> <tex-math id="FE1"> \begin{document}$ \left \{ \begin{array}{ll} -\triangle u = f(|x|, \ u, \ v, \ |\nabla u|), \; \; x\in \Omega, \\[10pt] -\triangle v = g(|x...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 9; pp. 21929 - 21942
Main Authors Wang, Dan, Li, Yongxiang
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article discusses the existence and uniqueness of radial solution for the elliptic equation system <disp-formula> <tex-math id="FE1"> \begin{document}$ \left \{ \begin{array}{ll} -\triangle u = f(|x|, \ u, \ v, \ |\nabla u|), \; \; x\in \Omega, \\[10pt] -\triangle v = g(|x|, \ u, \ v, \ |\nabla v|), \; \; x\in \Omega, \\[10pt] u|_{\partial \Omega} = 0, \; v|_{\partial \Omega} = 0, \end{array} \right. $\end{document} </tex-math></disp-formula> where $ \Omega = \{x\in \mathbb{R}^{N}:\; r_1 < |x| < r_2\}, \; N\ge 3, \; f, \; g:[r_1, \; r_2]\times \mathbb{R}\times \mathbb{R}\times \mathbb{R}^+\to \mathbb{R} $ are continuous. Due to the appearance of the gradient term in the nonlinearity, the equation system has no variational structure and the variational method cannot be applied to it directly. We will give the correlation conditions of $ f $ and $ g $, that is, $ f $ and $ g $ are superlinear or sublinear, and prove the existence and uniqueness of radial solutions by using Leray-Schauder fixed point theorem.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20231118