Advances in Photonic Crystal Fiber-Based Sensor for Detection of Physical and Biochemical Parameters-A Review

The promising properties of photonic crystal fibers (PCFs) have sparked the interest of a number of research organizations. Due to the PCF's air holes, liquid or gas samples can be inserted into them. This permits a well-controlled interaction between confined light and sensing samples, enablin...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 2; pp. 1012 - 1023
Main Authors Chaudhary, Vijay Shanker, Kumar, Dharmendra, Pandey, Bramha P., Kumar, Santosh
Format Journal Article
LanguageEnglish
Published New York IEEE 15.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The promising properties of photonic crystal fibers (PCFs) have sparked the interest of a number of research organizations. Due to the PCF's air holes, liquid or gas samples can be inserted into them. This permits a well-controlled interaction between confined light and sensing samples, enabling the development of novel sensing applications. That was never conceivable with conventional optical fibers. PCF applications in sensing fields can be divided into physical sensors and biochemical sensors based on the parameter being measured. Physical sensors measure pressure, temperature, refractive index (RI), curvature, vibration, torsion, electric field, and displacement, among other physical characteristics. Biochemical sensors can detect chemical and biological (such as antibodies, cells, bacteria, enzymes, viruses, nucleic acids, etc.) substances. The measurement of the chemical RI is a crucial component of biochemical sensors. Due to their close relationship with biosensors, chemical sensors are commonly referred to as biochemical sensors. This article covers the detecting capabilities of surface plasmon resonance (SPR)-based PCF biochemical and physical sensors in addition to a variety of ways to enhance their sensing capacities.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2022.3222969