Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins
In this work, a diffusive predator-prey model with the effects of toxins and delay is considered. Initially, we investigated the presence of solutions and the stability of the system. Then, we examined the local stability of the equilibria and Hopf bifurcation generated by delay, as well as the glob...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 9; pp. 21943 - 21967 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, a diffusive predator-prey model with the effects of toxins and delay is considered. Initially, we investigated the presence of solutions and the stability of the system. Then, we examined the local stability of the equilibria and Hopf bifurcation generated by delay, as well as the global stability of the equilibria using a Lyapunov function. In addition, we extract additional results regarding the presence and nonexistence of non-constant steady states in this model by taking into account the influence of diffusion. We show several numerical simulations to validate our theoretical findings. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20231119 |