Influence of silver precursor concentration on structural, optical and morphological properties of Cu1-xAgxInS2 semiconductor nanocrystals
Near-Infrared (NIR)-emitting Cu1-xAgxInS2 (x = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 mmol) semiconductor nanocrystals were synthesized from CuCl, AgNO3 and InCl3 precursors by varying the concentrations of silver precursor (0 ≤ x ≤ 1.0) using 1-dodecanethiol as capping agent by hot injection method....
Saved in:
Published in | Journal of alloys and compounds Vol. 729; pp. 407 - 417 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
30.12.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Near-Infrared (NIR)-emitting Cu1-xAgxInS2 (x = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 mmol) semiconductor nanocrystals were synthesized from CuCl, AgNO3 and InCl3 precursors by varying the concentrations of silver precursor (0 ≤ x ≤ 1.0) using 1-dodecanethiol as capping agent by hot injection method. In CuInS2 host lattice, the incorporation of Ag+ ions can be identified by the change of color from black (CuInS2) to dark brown (AgInS2). The absorption band-edge of the synthesized nanocrystal has shifted to blue-shift by changing the silver composition in Cu1-xAgxInS2 nanocrystals. The optical band gap (Egop) of synthesized nanocrystals increased with incremental change of silver ion concentrations. The structural, morphological and elemental compositions of the synthesized nanocrystals were studied using X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM) and Energy dispersive x-ray (EDX) spectroscopic analysis.
[Display omitted]
•NIR emitting-Cu1-xAgxInS2 nanocrystals were prepared by hot injection method.•Optical and Electrochemical bandgap were investigated.•CuInS2 and AgInS2 are hexagonal crystal structure.•Morphology of the nanocrystals changed from hexagonal-plate (CuInS2) to pyramid (AgInS2). |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2017.09.078 |