Deuterium and helium retention in W with and without He-induced W ‘fuzz’ exposed to pulsed high-temperature deuterium plasma

In the present work, helium (He) was incorporated into tungsten (W) samples by inductively coupled plasma (ICP) source above the threshold of He-induced W ‘fuzz’ formation on W surface. Then, W samples with and without nano-structured W ‘fuzz’ were exposed to pulsed heat loads using deuterium (D) pl...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 515; pp. 150 - 159
Main Authors Ogorodnikova, O.V., Klimov, K.S., Poskakalov, А.G., Kaziev, A.V., Kharkov, M.M., Efimov, V.S., Gasparyan, Yu. M., Volkov, N.V., Alimov, V. Kh, Tokitani, M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present work, helium (He) was incorporated into tungsten (W) samples by inductively coupled plasma (ICP) source above the threshold of He-induced W ‘fuzz’ formation on W surface. Then, W samples with and without nano-structured W ‘fuzz’ were exposed to pulsed heat loads using deuterium (D) plasma in quasi-stationary high-current plasma gun QSPA-T. The pulse duration was 1 ms and number of pulses was varied from one to thirty to simulate ITER transient events with surface heat load parameters relevant to edge-localized-mode (ELM) impacts. The irradiation was performed below and above the W melting threshold. The D and He retention in each irradiated sample was measured by a method of thermal desorption spectroscopy. We examined the impact of (i) ELMs-like events and (ii) formation of He-induced nano-structured ‘fuzz’ on the D retention in W. We found that the D retention was the highest for samples irradiated by plasma gun above the melting threshold after thirty pulses. Moreover, the D retention after 10 pulses of deuterium plasma gun exposure was higher than that after stationary low-energy plasma exposure at sample temperature of either 600 or 700 K indicating the dominate influence of ELM's-like events on the D retention compared to normal operation regime. The D retention in W samples with the presence of He-induced W ‘fuzz’ was slightly smaller than without that after one pulse of plasma gun exposure with heat load below the W melting temperature. The W ‘fuzz’ was not disappear in this loading conditions, only the length and thickness of nano-structured W fibres were reduced by factors of ∼4 and ∼2, respectively. The He concentration in W with W ‘fuzz’ was decreased by a factor of about 3 after one pulse of plasma gun exposure. The results obtained give possibility to assess the particle retention in divertor areas subjected to high thermal loads at different operation regimes.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2018.12.023