The protective effects of beta-mangostin against sodium iodate-induced retinal ROS-mediated apoptosis through MEK/ERK and p53 signaling pathways

Previous studies have indicated that NaIO 3 induces intracellular reactive oxygen species (ROS) production and has been used as a model for age-related macular degeneration (AMD) due to the selective retinal pigment epithelium (RPE) cell damage it induces. Beta-mangostin (BM) is a xanthone-type natu...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 14; no. 24; pp. 1896 - 199
Main Authors Chang, Yuan-Yen, Wang, Meilin, Yeh, Jui-Hsuan, Tsou, Shang-Chun, Chen, Tzu-Chun, Hsu, Min-Yen, Lee, Yi-Ju, Wang, Inga, Lin, Hui-Wen
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 11.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies have indicated that NaIO 3 induces intracellular reactive oxygen species (ROS) production and has been used as a model for age-related macular degeneration (AMD) due to the selective retinal pigment epithelium (RPE) cell damage it induces. Beta-mangostin (BM) is a xanthone-type natural compound isolated from Cratoxylum arborescens . The influence of BM on NaIO 3 -induced oxidative stress damage in ARPE-19 cells has not yet been elucidated. In this study, we investigated how BM protects ARPE-19 cells from NaIO 3 -induced ROS-mediated apoptosis. Our results revealed that BM notably improved cell viability and prevented ARPE-19 cell mitochondrial dysfunction mediated-apoptosis induced by NaIO 3 ; it was mediated by significantly reduced NaIO 3 -upregulated ROS, cellular H 2 O 2 production and improved downregulated glutathione and catalase activities. Furthermore, we found that BM could suppress the expression of Bax, cleaved PARP, and cleaved caspase-3 by decreasing phosphorylation of MEK/ERK and p53 expression in NaIO 3 -induced ARPE-19 cells. At the same time, we also used MEK inhibitors (PD98059) to confirm the above phenomenon. Moreover, our animal experiments revealed that BM prevented NaIO 3 from causing retinal deformation; it led to thicker outer and inner nuclear layers and downregulated cleaved caspase-3 expression compared to the group receiving NaIO 3 only. Collectively, these results suggest that BM can protect the RPE and retina from NaIO 3 -induced apoptosis through ROS-mediated mitochondrial dysfunction involving the MEK/ERK and p53 signaling pathways. Previous studies have indicated that NaIO 3 induces intracellular reactive oxygen species (ROS) production and has been used as a model for age-related macular degeneration (AMD) due to the selective retinal pigment epithelium (RPE) cell damage it induces.
Bibliography:https://doi.org/10.1039/d3fo03568a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2042-6496
2042-650X
2042-650X
DOI:10.1039/d3fo03568a