Cerebrospinal Fluid Analysis for Viruses by Metagenomic Next-Generation Sequencing in Pediatric Encephalitis: Not Yet Ready for Prime Time?

Metagenomic next-generation sequencing offers an unbiased approach to identifying viral pathogens in cerebrospinal fluid of patients with meningoencephalitis of unknown etiology. In an 11-month case series, we investigated the use of cerebrospinal fluid metagenomic next-generation sequencing to diag...

Full description

Saved in:
Bibliographic Details
Published inJournal of child neurology Vol. 36; no. 5; p. 350
Main Authors Erdem, Guliz, Kaptsan, Irina, Sharma, Himanshu, Kumar, Arvind, Aylward, Shawn C, Kapoor, Amit, Shimamura, Masako
Format Journal Article
LanguageEnglish
Published United States 01.04.2021
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Metagenomic next-generation sequencing offers an unbiased approach to identifying viral pathogens in cerebrospinal fluid of patients with meningoencephalitis of unknown etiology. In an 11-month case series, we investigated the use of cerebrospinal fluid metagenomic next-generation sequencing to diagnose viral infections among pediatric hospitalized patients presenting with encephalitis or meningoencephalitis of unknown etiology. Cerebrospinal fluid from patients with known enterovirus meningitis were included as positive controls. Cerebrospinal fluid from patients with primary intracranial hypertension were included to serve as controls without known infections. Cerebrospinal fluid metagenomic next-generation sequencing was performed for 37 patients. Among 27 patients with encephalitis or meningoencephalitis, 4 were later diagnosed with viral encephalitis, 6 had non-central nervous system infections with central nervous system manifestations, 6 had no positive diagnostic tests, and 11 were found to have a noninfectious diagnosis. Metagenomic next-generation sequencing identified West Nile virus (WNV) in the cerebrospinal fluid of 1 immunocompromised patient. Among the 4 patients with known enterovirus meningitis, metagenomic next-generation sequencing correctly identified enteroviruses and characterized the viral genotype. No viral sequences were detected in the cerebrospinal fluid of patients with primary intracranial hypertension. Metagenomic next-generation sequencing also identified sequences of nonpathogenic torque Teno virus in cerebrospinal fluid specimens from 13 patients. Our results showed viral detection by cerebrospinal fluid metagenomic next-generation sequencing only in 1 immunocompromised patient and did not offer a diagnostic advantage over conventional testing. Viral phylogenetic characterization by metagenomic next-generation sequencing could be used in epidemiologic investigations of some viral pathogens, such as enteroviruses. The finding of torque Teno viruses in cerebrospinal fluid by metagenomic next-generation sequencing is of unknown significance but may merit further exploration for a possible association with noninfectious central nervous system disorders.
ISSN:1708-8283
DOI:10.1177/0883073820972232