Modulating confinement space in metal-organic frameworks enables highly selective indole C3-formylation
Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 6; no. 44; pp. 5715 - 5718 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations.
MOF confinement catalysis can hinder the reaction of orthoformate and indole to form the trimethoxymethane compounds, thereby creating indole C3 formaldehyde compounds. |
---|---|
AbstractList | Here, Selective C3-formylation of indole was achieved under mild conditions using a metal–organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations. Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations.Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations. Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations. MOF confinement catalysis can hinder the reaction of orthoformate and indole to form the trimethoxymethane compounds, thereby creating indole C3 formaldehyde compounds. |
Author | Li, Minghao Gu, Yanlong Zheng, Deng-Yue Bai, Rongxian Zhang, Tianjian |
AuthorAffiliation | Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage Shihezi University Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Key Laboratory of Material Chemistry for Energy Conversion and Storage – sequence: 0 name: Hubei Key Laboratory of Material Chemistry and Service Failure – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: Ministry of Education – sequence: 0 name: Huazhong University of Science and Technology – sequence: 0 name: Shihezi University |
Author_xml | – sequence: 1 givenname: Deng-Yue surname: Zheng fullname: Zheng, Deng-Yue – sequence: 2 givenname: Tianjian surname: Zhang fullname: Zhang, Tianjian – sequence: 3 givenname: Rongxian surname: Bai fullname: Bai, Rongxian – sequence: 4 givenname: Minghao surname: Li fullname: Li, Minghao – sequence: 5 givenname: Yanlong surname: Gu fullname: Gu, Yanlong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38739371$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtr3TAQhUVJyKvZdN8i6CYE3EpXsmQvi_OElG5ayM7I0thRKku3kt1y_33k3DwgVJvR4juHmXMO0Y4PHhD6QMkXSlj91XCtCRWreniHDigTvCh5dbuz_Mu6kIyX--gwpXuSHy2rPbTPKslqJukBGr4HMzs1WT9gHXxvPYzgJ5zWSgO2Ho8wKVeEOChvNe6jGuFfiL8TBq86Bwnf2eHObXACB3qyfxeRCQ5ww4o-xHGzmAf_Hu32yiU4fppH6NfF-c_mqrj5cXndfLspNGNyKoQxtVl2q6uyEp3SjFMwRlLVdZqLFV8JBZoZqCWv89QMZD5EAu0Fo1KxI3Sy9V3H8GeGNLWjTRqcUx7CnFpGSs5ZSSqa0c9v0PswR5-3y5QgObeKi0x9eqLmbgTTrqMdVdy0zxFm4HQL6BhSitC_IJS0Sz_tGW-ax34uM0zewNpOjwFNUVn3f8nHrSQm_WL9Wjl7AAPSnDk |
CitedBy_id | crossref_primary_10_1039_D4CC06486K |
Cites_doi | 10.1021/jo00987a009 10.1016/j.jfluchem.2012.01.002 10.1016/j.tet.2006.11.043 10.3390/md11051427 10.1021/acs.orglett.2c01768 10.1016/S0040-4039(01)02380-2 10.1021/ja2048495 10.1039/D0QO00820F 10.1016/j.tet.2018.05.079 10.1016/j.ccr.2018.08.012 10.1002/cjoc.200890078 10.1002/cctc.202001606 10.1021/cr60120a002 10.1039/D1QM00429H 10.1016/j.tetlet.2005.06.042 10.1021/cs5005129 10.1039/C8TB02144A 10.1002/prac.19251090104 10.1021/accountsmr.1c00009 10.1039/c2cc31578e 10.1002/anie.200460592 10.1039/D1QI00934F 10.1016/S0040-4039(01)01031-0 10.1002/adma.201800643 10.1002/ejoc.200200653 10.1021/acscatal.0c00682 10.1021/jo01179a016 10.1021/jo800543w 10.1039/D1TA04444C 10.1021/cr0103569 10.1039/D0CS01538E 10.1021/jm981133m 10.1039/D0QI01191F 10.1021/ja506664a 10.1039/c3ob41510d 10.1021/acs.joc.5b02815 10.1002/cjoc.200890109 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d4cc01629g |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 5718 |
ExternalDocumentID | 38739371 10_1039_D4CC01629G d4cc01629g |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-6dd9d739398586bac341edd71abbc462426aec3de9749c3dc3e79377e1f6317a3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 14:51:15 EDT 2025 Sun Jun 29 16:04:33 EDT 2025 Thu Apr 03 07:05:34 EDT 2025 Tue Jul 01 04:23:19 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Tue Dec 17 20:58:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-6dd9d739398586bac341edd71abbc462426aec3de9749c3dc3e79377e1f6317a3 |
Notes | https://doi.org/10.1039/d4cc01629g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0007-9930-4723 0000-0003-0221-2405 0000-0003-3287-5082 0000-0001-5130-3026 |
PMID | 38739371 |
PQID | 3060734846 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1039_D4CC01629G proquest_miscellaneous_3054435081 crossref_primary_10_1039_D4CC01629G proquest_journals_3060734846 rsc_primary_d4cc01629g pubmed_primary_38739371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-28 |
PublicationDateYYYYMMDD | 2024-05-28 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D4CC01629G/cit13f/1) 2021; 8 Jenkins (D4CC01629G/cit11b/1) 2011 Tohyama (D4CC01629G/cit5a/1) 2005; 46 Fei (D4CC01629G/cit9/1) 2013; 11 Song (D4CC01629G/cit13e/1) 2021; 8 Wang (D4CC01629G/cit20/1) 2018; 6 Chatterjee (D4CC01629G/cit4a/1) 1973; 38 Yuan (D4CC01629G/cit15c/1) 2020; 7 Guo (D4CC01629G/cit13a/1) 2021; 50 Liu (D4CC01629G/cit11a/1) 2003; 76 van Niel (D4CC01629G/cit6/1) 1999; 42 Tuengpanya (D4CC01629G/cit12a/1) 2018; 74 Ferguson (D4CC01629G/cit1/1) 1946; 38 Zeng (D4CC01629G/cit12b/1) 2008; 26 Li (D4CC01629G/cit8c/1) 2014; 4 Reese (D4CC01629G/cit12d/1) 2001; 42 Khaksar (D4CC01629G/cit12c/1) 2012; 136 Okuhara (D4CC01629G/cit17/1) 2002; 102 Steenhaut (D4CC01629G/cit18/1) 2021; 9 Fischer (D4CC01629G/cit4b/1) 1925; 109 Férey (D4CC01629G/cit16/1) 2004; 43 Blume (D4CC01629G/cit7/1) 1945; 10 Hemmer (D4CC01629G/cit13b/1) 2021; 13 Dong (D4CC01629G/cit10/1) 2022; 24 Jin (D4CC01629G/cit15a/1) 2013; 11 Gu (D4CC01629G/cit19b/1) 2008; 26 Wen (D4CC01629G/cit14a/1) 2018; 376 Wu (D4CC01629G/cit8a/1) 2011; 133 Li (D4CC01629G/cit8b/1) 2012; 48 Zhang (D4CC01629G/cit14b/1) 2020; 10 Zhang (D4CC01629G/cit14c/1) 2018; 30 Kantlehner (D4CC01629G/cit2/1) 2003 Kunjapur (D4CC01629G/cit3/1) 2014; 136 Jiao (D4CC01629G/cit13c/1) 2021; 2 Bennasar (D4CC01629G/cit5b/1) 2007; 63 Chakrabarty (D4CC01629G/cit19a/1) 2002; 43 Cao (D4CC01629G/cit13d/1) 2021; 5 Netz (D4CC01629G/cit15b/1) 2016; 81 Paine (D4CC01629G/cit11c/1) 2008; 73 |
References_xml | – volume: 38 start-page: 4002 year: 1973 ident: D4CC01629G/cit4a/1 publication-title: J. Org. Chem. doi: 10.1021/jo00987a009 – volume: 136 start-page: 8 year: 2012 ident: D4CC01629G/cit12c/1 publication-title: J. Fluorine Chem. doi: 10.1016/j.jfluchem.2012.01.002 – volume: 63 start-page: 861 year: 2007 ident: D4CC01629G/cit5b/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2006.11.043 – volume: 11 start-page: 1427 year: 2013 ident: D4CC01629G/cit15a/1 publication-title: Mar. Drugs doi: 10.3390/md11051427 – volume: 24 start-page: 5034 year: 2022 ident: D4CC01629G/cit10/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.2c01768 – volume: 43 start-page: 1351 year: 2002 ident: D4CC01629G/cit19a/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)02380-2 – volume: 133 start-page: 11924 year: 2011 ident: D4CC01629G/cit8a/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2048495 – volume: 7 start-page: 3146 year: 2020 ident: D4CC01629G/cit15c/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO00820F – volume: 74 start-page: 4373 year: 2018 ident: D4CC01629G/cit12a/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2018.05.079 – volume: 376 start-page: 248 year: 2018 ident: D4CC01629G/cit14a/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.08.012 – start-page: P9388 year: 2011 ident: D4CC01629G/cit11b/1 publication-title: Chem. Eng. – volume: 26 start-page: 413 year: 2008 ident: D4CC01629G/cit12b/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.200890078 – volume: 13 start-page: 1683 year: 2021 ident: D4CC01629G/cit13b/1 publication-title: ChemCatChem doi: 10.1002/cctc.202001606 – volume: 38 start-page: 227 year: 1946 ident: D4CC01629G/cit1/1 publication-title: Chem. Rev. doi: 10.1021/cr60120a002 – volume: 5 start-page: 6969 year: 2021 ident: D4CC01629G/cit13d/1 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00429H – volume: 46 start-page: 5263 year: 2005 ident: D4CC01629G/cit5a/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2005.06.042 – volume: 4 start-page: 1897 year: 2014 ident: D4CC01629G/cit8c/1 publication-title: ACS Catal. doi: 10.1021/cs5005129 – volume: 6 start-page: 6607 year: 2018 ident: D4CC01629G/cit20/1 publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02144A – volume: 109 start-page: 69 year: 1925 ident: D4CC01629G/cit4b/1 publication-title: J. Prakt. Chem. doi: 10.1002/prac.19251090104 – volume: 2 start-page: 327 year: 2021 ident: D4CC01629G/cit13c/1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00009 – volume: 48 start-page: 5187 year: 2012 ident: D4CC01629G/cit8b/1 publication-title: Chem. Commun. doi: 10.1039/c2cc31578e – volume: 43 start-page: 6296 year: 2004 ident: D4CC01629G/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460592 – volume: 8 start-page: 5100 year: 2021 ident: D4CC01629G/cit13e/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI00934F – volume: 42 start-page: 5545 year: 2001 ident: D4CC01629G/cit12d/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)01031-0 – volume: 30 start-page: 1800643 year: 2018 ident: D4CC01629G/cit14c/1 publication-title: Adv. Mater. doi: 10.1002/adma.201800643 – start-page: 2530 year: 2003 ident: D4CC01629G/cit2/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.200200653 – volume: 10 start-page: 5805 year: 2020 ident: D4CC01629G/cit14b/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00682 – volume: 10 start-page: 255 year: 1945 ident: D4CC01629G/cit7/1 publication-title: J. Org. Chem. doi: 10.1021/jo01179a016 – volume: 73 start-page: 4929 year: 2008 ident: D4CC01629G/cit11c/1 publication-title: J. Org. Chem. doi: 10.1021/jo800543w – volume: 9 start-page: 21483 year: 2021 ident: D4CC01629G/cit18/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04444C – volume: 102 start-page: 3641 year: 2002 ident: D4CC01629G/cit17/1 publication-title: Chem. Rev. doi: 10.1021/cr0103569 – volume: 50 start-page: 5366 year: 2021 ident: D4CC01629G/cit13a/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01538E – volume: 42 start-page: 2087 year: 1999 ident: D4CC01629G/cit6/1 publication-title: J. Med. Chem. doi: 10.1021/jm981133m – volume: 8 start-page: 590 year: 2021 ident: D4CC01629G/cit13f/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01191F – volume: 136 start-page: 11644 year: 2014 ident: D4CC01629G/cit3/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506664a – volume: 11 start-page: 7092 year: 2013 ident: D4CC01629G/cit9/1 publication-title: Org. Biomol. Chem. doi: 10.1039/c3ob41510d – volume: 76 start-page: 189 year: 2003 ident: D4CC01629G/cit11a/1 publication-title: Org. Synth. – volume: 81 start-page: 1723 year: 2016 ident: D4CC01629G/cit15b/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b02815 – volume: 26 start-page: 578 year: 2008 ident: D4CC01629G/cit19b/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.200890109 |
SSID | ssj0000158 |
Score | 2.471719 |
Snippet | Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within... Here, Selective C3-formylation of indole was achieved under mild conditions using a metal–organic framework (MOF) catalyst. The confined reaction space within... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5715 |
SubjectTerms | Density functional theory Metal-organic frameworks |
Title | Modulating confinement space in metal-organic frameworks enables highly selective indole C3-formylation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38739371 https://www.proquest.com/docview/3060734846 https://www.proquest.com/docview/3054435081 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZK9wAviF9jHQMZwQuqPNbYcZrHkQ0G2nhAnVR4iRzb6Ya6BK2txPgH-Lc524njiiIBL0lrJ23k-3K-s---Q-hlyWLBJY-IFloTRqUgQo8oEWYuTJMS1IPZ0T37yE_O2YdpPO31fgZRS6tlsS9_bMwr-R-pQhvI1WTJ_oNk_Y9CA3wG-cIRJAzHv5LxWa1s9S2bN1uVYDDarX1QEtJygVxpMK2JK9wkh2Ubh7UYapsxtRgasuL5zXBhi-GYGCLw0E24YUaJMWZv5p3cWjaDlmBAhpkldunWp39Z_eqKgwQLDV8utNMrR3Amn1e662jWrCcA1a8BXN-4Utmf6mr2PWg-vXTx_tXsQtThqkXEzIZ7FCpaGqckoY5Kcl83bZwR8KCmoXbmAQgZC1RtnIziYNqGr-ONU8IBNYyqikkJ1m2UzrqJz4cjdp230FYE_kbUR1uHx5P3pwETmS316h-7Zbql6evu7nXb5jeHBcyX67asjDVfJvfQ3cbvwIcORPdRT1cP0O2sLff3EM06MOEATNiCCV9WeA1MuAMTbsCEHZiwBxN2YMLrYHqEzt8eT7IT0lThIJLSZEm4UqkyvInpOB7zQkiwe7RSyUgUhWQmvYgLLanS4JmmcJZUG87FRI9KDsapoNuoX9WV3kGYK6pUJAtJ45JxbsqmiRgMclHwRIOxOUCv2vHLZUNRbyqlzHMbKkHT_IhlmR3rdwP0wl_7zRGzbLxqrxVD3ry4ixy85AND6sT4AD333TDcZq9MVLpemWsMMSR4L_BQj534_N_QsaORHKBtkKdv7nCw-6eOJ-hO9zLsof7yeqWfglG7LJ41gPsFyqqltw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+confinement+space+in+metal-organic+frameworks+enables+highly+selective+indole+C3-formylation&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Zheng%2C+Deng-Yue&rft.au=Zhang%2C+Tianjian&rft.au=Bai%2C+Rongxian&rft.au=Li%2C+Minghao&rft.date=2024-05-28&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=6&rft.issue=44&rft.spage=5715&rft.epage=5718&rft_id=info:doi/10.1039%2Fd4cc01629g&rft.externalDocID=d4cc01629g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |