Two-dimensional titanium carbide (TiCT) MXenes to inhibit the shuttle effect in sodium sulfur batteries

Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density. However, one of the main technical challenges of RT-NSBs is the shuttle effect...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 24; no. 7; pp. 4187 - 4195
Main Authors Thatsami, N, Tangpakonsab, P, Moontragoon, P, Umer, R, Hussain, T, Kaewmaraya, T
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 16.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density. However, one of the main technical challenges of RT-NSBs is the shuttle effect by which active redox intermediates ( i.e. , sodium polysulfides Na 2 S n , n = 1-8) are dissolved in electrolytes, which hamper the battery reversibility. The interfacial interplays between Na 2 S n and the electrodes (or electrolytes) at the atomic level thus play an intrinsic role in elucidating the shuttle effect. This work reports the ab initio calculations to unravel the suppression of the shuttle effect using titanium carbide MXenes (Ti 3 C 2 T x , T x = F, O) as the cathode additives. The findings reveal that the shuttle phenomenon is efficiently resolved because the immense chemical bonding of Na 2 S n -Ti 3 C 2 T x interfaces competitively surpasses the binding magnitudes of Na 2 S n -electrolyte interaction. The analysis of the electronic density of states and charge density further manifests that there is charge donation from the Na-3s orbital of Na 2 S n to the unfilled F(O)-2p orbitals of metallic Ti 3 C 2 T x . The metallicity of the Ti 3 C 2 T x remains preserved during the entire course of the redox process, ensuring the rapid electrochemical kinetics. Furthermore, the presence of Ti 3 C 2 T x additives drastically reduces the dissociation barrier of the final redox product Na 2 S, yielding the efficient utilization of sulfur during the discharge process. This work has proposed the unexplored functionality of Ti 3 C 2 T x as the anchoring materials for RT-NSBs. Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density.
AbstractList Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density. However, one of the main technical challenges of RT-NSBs is the shuttle effect by which active redox intermediates ( , sodium polysulfides Na S , = 1-8) are dissolved in electrolytes, which hamper the battery reversibility. The interfacial interplays between Na S and the electrodes (or electrolytes) at the atomic level thus play an intrinsic role in elucidating the shuttle effect. This work reports the calculations to unravel the suppression of the shuttle effect using titanium carbide MXenes (Ti C T , T = F, O) as the cathode additives. The findings reveal that the shuttle phenomenon is efficiently resolved because the immense chemical bonding of Na S -Ti C T interfaces competitively surpasses the binding magnitudes of Na S -electrolyte interaction. The analysis of the electronic density of states and charge density further manifests that there is charge donation from the Na-3s orbital of Na S to the unfilled F(O)-2p orbitals of metallic Ti C T . The metallicity of the Ti C T remains preserved during the entire course of the redox process, ensuring the rapid electrochemical kinetics. Furthermore, the presence of Ti C T additives drastically reduces the dissociation barrier of the final redox product Na S, yielding the efficient utilization of sulfur during the discharge process. This work has proposed the unexplored functionality of Ti C T as the anchoring materials for RT-NSBs.
Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density. However, one of the main technical challenges of RT-NSBs is the shuttle effect by which active redox intermediates ( i.e. , sodium polysulfides Na 2 S n , n = 1-8) are dissolved in electrolytes, which hamper the battery reversibility. The interfacial interplays between Na 2 S n and the electrodes (or electrolytes) at the atomic level thus play an intrinsic role in elucidating the shuttle effect. This work reports the ab initio calculations to unravel the suppression of the shuttle effect using titanium carbide MXenes (Ti 3 C 2 T x , T x = F, O) as the cathode additives. The findings reveal that the shuttle phenomenon is efficiently resolved because the immense chemical bonding of Na 2 S n -Ti 3 C 2 T x interfaces competitively surpasses the binding magnitudes of Na 2 S n -electrolyte interaction. The analysis of the electronic density of states and charge density further manifests that there is charge donation from the Na-3s orbital of Na 2 S n to the unfilled F(O)-2p orbitals of metallic Ti 3 C 2 T x . The metallicity of the Ti 3 C 2 T x remains preserved during the entire course of the redox process, ensuring the rapid electrochemical kinetics. Furthermore, the presence of Ti 3 C 2 T x additives drastically reduces the dissociation barrier of the final redox product Na 2 S, yielding the efficient utilization of sulfur during the discharge process. This work has proposed the unexplored functionality of Ti 3 C 2 T x as the anchoring materials for RT-NSBs. Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density.
Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density. However, one of the main technical challenges of RT-NSBs is the shuttle effect by which active redox intermediates ( i.e. , sodium polysulfides Na 2 S n , n = 1–8) are dissolved in electrolytes, which hamper the battery reversibility. The interfacial interplays between Na 2 S n and the electrodes (or electrolytes) at the atomic level thus play an intrinsic role in elucidating the shuttle effect. This work reports the ab initio calculations to unravel the suppression of the shuttle effect using titanium carbide MXenes (Ti 3 C 2 T x , T x = F, O) as the cathode additives. The findings reveal that the shuttle phenomenon is efficiently resolved because the immense chemical bonding of Na 2 S n –Ti 3 C 2 T x interfaces competitively surpasses the binding magnitudes of Na 2 S n –electrolyte interaction. The analysis of the electronic density of states and charge density further manifests that there is charge donation from the Na-3s orbital of Na 2 S n to the unfilled F(O)-2p orbitals of metallic Ti 3 C 2 T x . The metallicity of the Ti 3 C 2 T x remains preserved during the entire course of the redox process, ensuring the rapid electrochemical kinetics. Furthermore, the presence of Ti 3 C 2 T x additives drastically reduces the dissociation barrier of the final redox product Na 2 S, yielding the efficient utilization of sulfur during the discharge process. This work has proposed the unexplored functionality of Ti 3 C 2 T x as the anchoring materials for RT-NSBs.
Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural abundance of the electrode materials and impressive energy density. However, one of the main technical challenges of RT-NSBs is the shuttle effect by which active redox intermediates (i.e., sodium polysulfides Na2Sn, n = 1–8) are dissolved in electrolytes, which hamper the battery reversibility. The interfacial interplays between Na2Sn and the electrodes (or electrolytes) at the atomic level thus play an intrinsic role in elucidating the shuttle effect. This work reports the ab initio calculations to unravel the suppression of the shuttle effect using titanium carbide MXenes (Ti3C2Tx, Tx = F, O) as the cathode additives. The findings reveal that the shuttle phenomenon is efficiently resolved because the immense chemical bonding of Na2Sn–Ti3C2Tx interfaces competitively surpasses the binding magnitudes of Na2Sn–electrolyte interaction. The analysis of the electronic density of states and charge density further manifests that there is charge donation from the Na-3s orbital of Na2Sn to the unfilled F(O)-2p orbitals of metallic Ti3C2Tx. The metallicity of the Ti3C2Tx remains preserved during the entire course of the redox process, ensuring the rapid electrochemical kinetics. Furthermore, the presence of Ti3C2Tx additives drastically reduces the dissociation barrier of the final redox product Na2S, yielding the efficient utilization of sulfur during the discharge process. This work has proposed the unexplored functionality of Ti3C2Tx as the anchoring materials for RT-NSBs.
Author Thatsami, N
Umer, R
Hussain, T
Kaewmaraya, T
Moontragoon, P
Tangpakonsab, P
AuthorAffiliation Khalifa University of Science and Technology
School of Chemical Engineering
The University of Queensland
NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy
Institute of Nanomaterials Research and Innovation for Energy (IN-RIE)
Department of Aerospace Engineering
School of School of Science and Technology
St Lucia
University of New England
Armidale
Department of Physics
Khon Kaen University
AuthorAffiliation_xml – name: University of New England
– name: NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy
– name: Armidale
– name: Khalifa University of Science and Technology
– name: Department of Aerospace Engineering
– name: Department of Physics
– name: School of Chemical Engineering
– name: St Lucia
– name: Khon Kaen University
– name: School of School of Science and Technology
– name: Institute of Nanomaterials Research and Innovation for Energy (IN-RIE)
– name: The University of Queensland
Author_xml – sequence: 1
  givenname: N
  surname: Thatsami
  fullname: Thatsami, N
– sequence: 2
  givenname: P
  surname: Tangpakonsab
  fullname: Tangpakonsab, P
– sequence: 3
  givenname: P
  surname: Moontragoon
  fullname: Moontragoon, P
– sequence: 4
  givenname: R
  surname: Umer
  fullname: Umer, R
– sequence: 5
  givenname: T
  surname: Hussain
  fullname: Hussain, T
– sequence: 6
  givenname: T
  surname: Kaewmaraya
  fullname: Kaewmaraya, T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35113122$$D View this record in MEDLINE/PubMed
BookMark eNpd0U1rGzEQBmBRHJo46SX3FEEvTmCTkbTaj2NxPqlLe3Cgt0WrHdVyd1eOpCXk33cdJy70NIJ5NAzvTMmkdz0ScsrgkoEorxqmNyAFwJ8P5IilmUhKKNLJ_p1nh2QawhoAmGTiIzkUkjHBOD8iv5fPLmlsh32wrlctjTaq3g4d1crXtkE6W9r58px-_4U9Bhodtf3K1jbSuEIaVkOMLVI0BnUcWzS4Zvs7DK0ZPK1VjOgthhNyYFQb8NNbPSaPtzfL-X2y-HH3MP-6SLQQeUwyXoKUpsl1AdBoofJxyxJEUWRcKdBSFJlAZQpuQEmVQi1SWRrGMqwZ1Fwck9lu7sa7pwFDrDobNLat6tENoeIZlzxnrNzSL__RtRv8mMGrKqFMJcCoLnZKexeCR1NtvO2Uf6kYVNv4q2s2__ka_7cRf34bOdQdNnv6nvcIznbAB73v_ruf-AtTronf
CitedBy_id crossref_primary_10_1016_j_inoche_2024_112362
crossref_primary_10_1016_j_jpowsour_2023_233298
crossref_primary_10_1039_D2CP02557D
crossref_primary_10_1039_D2NR05930D
crossref_primary_10_1039_D2CP05366G
crossref_primary_10_1021_acs_jpcc_2c05223
crossref_primary_10_1002_adfm_202302626
crossref_primary_10_1039_D3NJ03271J
crossref_primary_10_1016_j_jpowsour_2023_233639
crossref_primary_10_1039_D2SE01525K
Cites_doi 10.1039/D0QI00939C
10.1039/D1TA05861D
10.1021/acsnano.0c03737
10.1021/acs.jpcc.5b10366
10.1002/adma.201603040
10.1063/1.1323224
10.1016/j.cej.2021.132389
10.1016/j.matt.2019.12.020
10.1021/acs.jpcc.9b10314
10.1063/1.1733573
10.1021/jacs.6b08685
10.1002/advs.201903246
10.1038/s41560-018-0097-0
10.1021/acsnano.9b03412
10.1021/jacs.8b12973
10.1021/acs.langmuir.0c02616
10.1002/jcc.21057
10.1103/PhysRevB.50.17953
10.1039/C8TA09556F
10.1002/aelm.202001202
10.1016/j.joule.2019.03.028
10.1021/acsenergylett.0c00492
10.1039/C7TA09094C
10.1021/acsenergylett.0c02488
10.1021/acsami.1c10868
10.3390/nano11051197
10.1002/adma.201901125
10.1002/batt.201800118
10.1016/j.matdes.2017.05.052
10.1103/PhysRevLett.77.3865
10.1039/C9EE03251G
10.1021/acs.jpcc.1c00467
10.1038/s41467-018-06443-3
10.1021/acsnano.5b05556
10.1021/acsnano.9b04977
10.1039/C4CP05666C
10.1038/s41467-019-11600-3
10.1063/1.3382344
10.1002/adma.201907557
10.1039/C2EE23606K
10.1021/acs.jpcc.9b06023
10.1021/acs.nanolett.6b05172
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d1cp05300k
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 4195
ExternalDocumentID 10_1039_D1CP05300K
35113122
d1cp05300k
Genre Journal Article
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
XOL
YNT
---
-DZ
-JG
-~X
0R~
53G
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGRSR
AHGCF
APEMP
GGIMP
H13
HZ~
NPM
RAOCF
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
COF
ID FETCH-LOGICAL-c337t-629055fd7c800dc3a71229038862aa0c53863eaf82f0a5a40b3459f116eb10b23
ISSN 1463-9076
IngestDate Thu Jul 25 11:40:57 EDT 2024
Fri Sep 13 07:34:53 EDT 2024
Thu Sep 12 17:02:31 EDT 2024
Sat Sep 28 08:24:37 EDT 2024
Thu Feb 17 04:34:53 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-629055fd7c800dc3a71229038862aa0c53863eaf82f0a5a40b3459f116eb10b23
Notes 10.1039/d1cp05300k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5732-9961
0000-0003-3739-4587
0000-0003-1973-4584
PMID 35113122
PQID 2629094500
PQPubID 2047499
PageCount 9
ParticipantIDs proquest_miscellaneous_2625271192
pubmed_primary_35113122
crossref_primary_10_1039_D1CP05300K
rsc_primary_d1cp05300k
proquest_journals_2629094500
PublicationCentury 2000
PublicationDate 2022-02-16
PublicationDateYYYYMMDD 2022-02-16
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yan (D1CP05300K/cit16/1) 2020; 5
Zhang (D1CP05300K/cit3/1) 2021; 6
Ye (D1CP05300K/cit12/1) 2020; 32
Liang (D1CP05300K/cit42/1) 2016; 29
Wang (D1CP05300K/cit9/1) 2016; 138
Wang (D1CP05300K/cit37/1) 2019; 13
Chen (D1CP05300K/cit43/1) 2019; 2
Kaewmaraya (D1CP05300K/cit7/1) 2020
Hu (D1CP05300K/cit27/1) 2015; 17
Yan (D1CP05300K/cit24/1) 2019; 10
Perdew (D1CP05300K/cit34/1) 1996; 77
Aslam (D1CP05300K/cit6/1) 2022; 429
Jayan (D1CP05300K/cit22/1) 2021; 125
Yan (D1CP05300K/cit10/1) 2020; 14
Carter (D1CP05300K/cit15/1) 2017; 17
Boota (D1CP05300K/cit28/1) 2021; 7
Chaudhari (D1CP05300K/cit26/1) 2017; 5
Grimme (D1CP05300K/cit35/1) 2010; 132
Lu (D1CP05300K/cit5/1) 2013; 6
Haseeb (D1CP05300K/cit38/1) 2020; 124
Gong (D1CP05300K/cit39/1) 2020; 124
Xin (D1CP05300K/cit31/1) 2017; 130
Sajjad (D1CP05300K/cit21/1) 2020; 36
Yang (D1CP05300K/cit23/1) 2021; 11
Clementi (D1CP05300K/cit41/1) 1963; 38
Henkelman (D1CP05300K/cit36/1) 2000; 113
Bao (D1CP05300K/cit19/1) 2019; 13
Wang (D1CP05300K/cit13/1) 2020; 13
Li (D1CP05300K/cit2/1) 2019; 3
Yang (D1CP05300K/cit20/1) 2020; 7
Boota (D1CP05300K/cit29/1) 2021; 9
Jayan (D1CP05300K/cit44/1) 2021; 13
Guo (D1CP05300K/cit11/1) 2020; 7
Chung (D1CP05300K/cit8/1) 2019; 31
Yang (D1CP05300K/cit14/1) 2019; 7
Yu (D1CP05300K/cit30/1) 2016; 120
Du (D1CP05300K/cit40/1) 2019; 141
Hafner (D1CP05300K/cit32/1) 2008; 29
Assat (D1CP05300K/cit1/1) 2018; 3
Xu (D1CP05300K/cit18/1) 2018; 9
Zhang (D1CP05300K/cit25/1) 2019; 0
Ye (D1CP05300K/cit4/1) 2020; 2
Blöchl (D1CP05300K/cit33/1) 1994; 50
Bhimanapati (D1CP05300K/cit17/1) 2015; 9
References_xml – volume: 7
  start-page: 4396
  year: 2020
  ident: D1CP05300K/cit20/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00939C
  contributor:
    fullname: Yang
– volume: 9
  start-page: 20356
  year: 2021
  ident: D1CP05300K/cit29/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05861D
  contributor:
    fullname: Boota
– volume: 14
  start-page: 10284
  year: 2020
  ident: D1CP05300K/cit10/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03737
  contributor:
    fullname: Yan
– volume: 120
  start-page: 5288
  issue: 10
  year: 2016
  ident: D1CP05300K/cit30/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10366
  contributor:
    fullname: Yu
– volume: 29
  start-page: 1603040
  year: 2016
  ident: D1CP05300K/cit42/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603040
  contributor:
    fullname: Liang
– volume: 113
  start-page: 9978
  year: 2000
  ident: D1CP05300K/cit36/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
  contributor:
    fullname: Henkelman
– volume: 429
  start-page: 132389
  year: 2022
  ident: D1CP05300K/cit6/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132389
  contributor:
    fullname: Aslam
– volume: 2
  start-page: 323
  year: 2020
  ident: D1CP05300K/cit4/1
  publication-title: Matter
  doi: 10.1016/j.matt.2019.12.020
  contributor:
    fullname: Ye
– volume: 0
  start-page: 1
  year: 2019
  ident: D1CP05300K/cit25/1
  publication-title: Energy Environ. Mater.
  contributor:
    fullname: Zhang
– volume: 124
  start-page: 3644
  year: 2020
  ident: D1CP05300K/cit39/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10314
  contributor:
    fullname: Gong
– volume: 38
  start-page: 2686
  year: 1963
  ident: D1CP05300K/cit41/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1733573
  contributor:
    fullname: Clementi
– volume: 138
  start-page: 16576
  issue: 51
  year: 2016
  ident: D1CP05300K/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08685
  contributor:
    fullname: Wang
– volume: 7
  start-page: 1903246
  year: 2020
  ident: D1CP05300K/cit11/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903246
  contributor:
    fullname: Guo
– volume: 3
  start-page: 373
  year: 2018
  ident: D1CP05300K/cit1/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0097-0
  contributor:
    fullname: Assat
– volume: 13
  start-page: 11078
  year: 2019
  ident: D1CP05300K/cit37/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03412
  contributor:
    fullname: Wang
– volume: 141
  start-page: 3977
  year: 2019
  ident: D1CP05300K/cit40/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12973
  contributor:
    fullname: Du
– volume: 36
  start-page: 13104
  issue: 43
  year: 2020
  ident: D1CP05300K/cit21/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c02616
  contributor:
    fullname: Sajjad
– volume: 29
  start-page: 2044
  year: 2008
  ident: D1CP05300K/cit32/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21057
  contributor:
    fullname: Hafner
– volume: 50
  start-page: 17953
  year: 1994
  ident: D1CP05300K/cit33/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume: 7
  start-page: 150
  year: 2019
  ident: D1CP05300K/cit14/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09556F
  contributor:
    fullname: Yang
– volume: 7
  start-page: 2001202
  year: 2021
  ident: D1CP05300K/cit28/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202001202
  contributor:
    fullname: Boota
– volume: 3
  start-page: 911
  year: 2019
  ident: D1CP05300K/cit2/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.028
  contributor:
    fullname: Li
– volume: 5
  start-page: 1307
  year: 2020
  ident: D1CP05300K/cit16/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00492
  contributor:
    fullname: Yan
– volume: 5
  start-page: 24564
  year: 2017
  ident: D1CP05300K/cit26/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09094C
  contributor:
    fullname: Chaudhari
– volume: 6
  start-page: 529
  year: 2021
  ident: D1CP05300K/cit3/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02488
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 35848
  year: 2021
  ident: D1CP05300K/cit44/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c10868
  contributor:
    fullname: Jayan
– start-page: 46
  year: 2020
  ident: D1CP05300K/cit7/1
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Kaewmaraya
– volume: 11
  start-page: 1197
  year: 2021
  ident: D1CP05300K/cit23/1
  publication-title: Nanomaterials
  doi: 10.3390/nano11051197
  contributor:
    fullname: Yang
– volume: 31
  start-page: 1901125
  year: 2019
  ident: D1CP05300K/cit8/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901125
  contributor:
    fullname: Chung
– volume: 2
  start-page: 128
  year: 2019
  ident: D1CP05300K/cit43/1
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.201800118
  contributor:
    fullname: Chen
– volume: 130
  start-page: 512
  year: 2017
  ident: D1CP05300K/cit31/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.05.052
  contributor:
    fullname: Xin
– volume: 77
  start-page: 3865
  year: 1996
  ident: D1CP05300K/cit34/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 13
  start-page: 562
  year: 2020
  ident: D1CP05300K/cit13/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03251G
  contributor:
    fullname: Wang
– volume: 125
  start-page: 4458
  year: 2021
  ident: D1CP05300K/cit22/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c00467
  contributor:
    fullname: Jayan
– volume: 9
  start-page: 3870
  year: 2018
  ident: D1CP05300K/cit18/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06443-3
  contributor:
    fullname: Xu
– volume: 9
  start-page: 11509
  year: 2015
  ident: D1CP05300K/cit17/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05556
  contributor:
    fullname: Bhimanapati
– volume: 13
  start-page: 11500
  year: 2019
  ident: D1CP05300K/cit19/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04977
  contributor:
    fullname: Bao
– volume: 17
  start-page: 9997
  year: 2015
  ident: D1CP05300K/cit27/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05666C
  contributor:
    fullname: Hu
– volume: 10
  start-page: 4793
  year: 2019
  ident: D1CP05300K/cit24/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11600-3
  contributor:
    fullname: Yan
– volume: 132
  start-page: 154104
  year: 2010
  ident: D1CP05300K/cit35/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
  contributor:
    fullname: Grimme
– volume: 32
  start-page: 1907557
  year: 2020
  ident: D1CP05300K/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907557
  contributor:
    fullname: Ye
– volume: 6
  start-page: 299
  year: 2013
  ident: D1CP05300K/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23606K
  contributor:
    fullname: Lu
– volume: 124
  start-page: 2739
  year: 2020
  ident: D1CP05300K/cit38/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b06023
  contributor:
    fullname: Haseeb
– volume: 17
  start-page: 1863
  year: 2017
  ident: D1CP05300K/cit15/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05172
  contributor:
    fullname: Carter
SSID ssj0001513
Score 2.4767792
Snippet Room-temperature sodium sulfur batteries (RT-NSBs) are among the promising candidates for large-scale energy storage applications because of the natural...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 4187
SubjectTerms Additives
Charge density
Chemical bonds
Electrode materials
Electrolytes
Energy storage
Flux density
Metallicity
MXenes
Room temperature
Sodium
Sodium sulfide
Sodium sulfur batteries
Storage batteries
Sulfur
Titanium carbide
Title Two-dimensional titanium carbide (TiCT) MXenes to inhibit the shuttle effect in sodium sulfur batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/35113122
https://www.proquest.com/docview/2629094500/abstract/
https://search.proquest.com/docview/2625271192
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5Be4ALYisYChoEB1BlGHu8zbEyqQokJUKOlJs13hoDtaPYFohfz5vNaSiHwsVynpOxPe_LW2begtCrgDPZi8Z2eMVsryhCO-MRt0NhO3gZ6LBc5DvPzoLThfdx6S-3oUMyu6TP3ua__ppX8j9cBRrwVWTJ_gNnx0GBAOfAXzgCh-F4PR7_aO1ClOfvdNQ4OPpNPVyIetNZXUjzMalp7CY_hfc_WwrBJqzNulnVWS3TGI-61SDqGOvIDrH-0bWFGKQbvlfD5iiTFThNrKG2Y-eGvblpGKfOBEktlnRysWEex2MCWbLifccv6p0NoIQ352surFSe7aSbzVoRRM_PWxUWMNIXut3Ll8vrFeDqiu4putq1krFeQG1GVGc4I4RVIrUGW3hJonqOVsil_qh6cl6R_ISKwqmFk69BrBDybavfzJ7-2ef0ZDGdpslkmdxE-27IfPDW948nyYfpqLzBAKKmii1l77bj7dotV5wRME02pmWMNE2Su-iO9inwsQLIPXSjbO6jW7HhzAP09Q-gYAMUrIGCX2uYvMEKJLhvsQYJBpBgDRKsQAKXsAIJViDBI0geosXJJIlPbd1kw84pDXs7cBnx_aoIc3Adipzy0BEtAGgEri7nJAeFGNCSV5FbEe5zj2TU81nlOAFoeZK59ADtNW1TPkYYSOBvO1UUMQJ2fhB5XhH6LqXwE5oXpYVemilM16qWSipjIChL3zvxXE70JwsdmtlN9X-tS13xmMzzCbHQi_EyzKLY3uJN2Q7yO74bOuCyWOiR4sp4G7FdTuHFLHQAbBrJW_Y-ucawT9HtLaAP0V6_GcpnYJL22XMNo9_8Do6J
link.rule.ids 315,786,790,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+titanium+carbide+%28Ti3C2Tx%29+MXenes+to+inhibit+the+shuttle+effect+in+sodium+sulfur+batteries&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Thatsami%2C+N&rft.au=Tangpakonsab%2C+P&rft.au=Moontragoon%2C+P&rft.au=Umer%2C+R&rft.date=2022-02-16&rft.eissn=1463-9084&rft.volume=24&rft.issue=7&rft.spage=4187&rft.epage=4195&rft_id=info:doi/10.1039%2Fd1cp05300k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon