Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: controlling transmission/reflection and making a window into an RF lens
Reconfigurable intelligent surfaces (RISs) that dynamically manipulate scattered waves have attracted much attention regarding accommodating coverage holes in wireless communication systems using radio wave frequencies higher than millimeter waves. RISs generally actualized through metasurface techn...
Saved in:
Published in | Optics express Vol. 29; no. 18; pp. 29292 - 29307 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
30.08.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | Reconfigurable intelligent surfaces (RISs) that dynamically manipulate scattered waves have attracted much attention regarding accommodating coverage holes in wireless communication systems using radio wave frequencies higher than millimeter waves. RISs generally actualized through metasurface technologies must be visually unaffected so that they can be installed in various locations such as existing walls and glass windows in environments where propagation should be controlled. We propose a novel method that dynamically controls scattering characteristics of metasurfaces while achieving a large area and high optical transparency. For transparency in the visible light range, we use transparent glass as a substrate and meshed metal patterns. Furthermore, by stacking a metasurface substrate onto another transparent substrate and controlling the interlayer distance, we achieve dynamic control of the scattered waves over a large area in the 28-GHz band. Fabricated prototypes successfully operate when switching transmission and reflection modes, exhibiting extremely low loss of less than -1 dB. In metasurface lenses that can be attached to glass windows in outdoor-to-indoor scenarios, the lens gain of 25.4 dB is achieved for a static lens, and dynamic switching operation between single focus and dual focus is also successfully verified for a dynamic lens. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.435648 |