Wolff potential estimates for elliptic equations with nonstandard growth and applications
We study superharmonic functions related to elliptic equations with structural conditions involving a variable growth exponent. We establish pointwise estimates for such functions in terms of a Wolff type potential. We apply these estimates to prove a variable exponent version of the Hedberg–Wolff t...
Saved in:
Published in | Forum mathematicum Vol. 22; no. 6; pp. 1061 - 1087 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Walter de Gruyter GmbH & Co. KG
01.11.2010
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study superharmonic functions related to elliptic equations with structural conditions involving a variable growth exponent. We establish pointwise estimates for such functions in terms of a Wolff type potential. We apply these estimates to prove a variable exponent version of the Hedberg–Wolff theorem on the dual of Sobolev spaces with zero boundary values. |
---|---|
Bibliography: | ark:/67375/QT4-BSK8S0PL-Z istex:79F7A48A364D7D4F766B47241EFA21F9854CC3BB ArticleID:form.22.6.1061 forum.2010.057.pdf ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0933-7741 1435-5337 |
DOI: | 10.1515/forum.2010.057 |