Network Optimization Problems Subject to Max-Min Fair Flow Allocation

We propose a novel way to consider the max-min fairness (MMF) paradigm in traffic engineering. Since MMF appears as a reference model for a fair capacity allocation when the traffic flows are elastic and rates are adapted based on resource availability, we consider it as a requirement due to the way...

Full description

Saved in:
Bibliographic Details
Published inIEEE communications letters Vol. 17; no. 7; pp. 1463 - 1466
Main Authors Amaldi, E., Capone, A., Coniglio, S., Gianoli, L. G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a novel way to consider the max-min fairness (MMF) paradigm in traffic engineering. Since MMF appears as a reference model for a fair capacity allocation when the traffic flows are elastic and rates are adapted based on resource availability, we consider it as a requirement due to the way resources are shared by the distributed rate control scheme (like that of the transport protocol), rather than the routing objective. In particular, we define the traffic engineering problem where, given a network topology with link capacities and a set of elastic traffic demands to route, we must select a single path for each demand so as to maximize a network utility function, assuming an MMF bandwidth allocation. We propose a compact mixed-integer linear programming formulation as well as a restricted path formulation. We show with computational experiments that the exact formulation can be solved in a reasonable amount of computing time for medium-size networks and that the restricted path model provides solutions of comparable quality much faster.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2013.060513.130351